Skip to Content

Lazy Humans Shaped Google’s New Autonomous Car

Google came up with a new approach to its self-driving car project because humans trusted its previous prototypes too much.

The fact that Google’s bubble-like self-driving car, unveiled this week, lacks a steering wheel might be seen as evidence the company’s software is close to mastering the challenges of piloting a vehicle. But the car’s design is just as much a consequence of what Google’s existing fleet of automated Lexus SUVs revealed about human laziness.

Driver optional: Google’s new car design lacks a steering wheel and other conventional controls.

Google’s engineers had been focused on perfecting how well those modified cars could handle freeway driving, and they imagined their technology hitting the market in a way that left humans sharing driving duties with their vehicle. “The idea was that the human drives onto the freeway, engages the system, [and] it takes them on the bulk of the trip—the boring part—and then they reëngage,” said Nathaniel Fairfield, a technical lead on the project, speaking at the Embedded Vision Summit in Santa Clara, California, on Thursday.

That approach had to be scrapped after tests showed that human drivers weren’t trustworthy enough to be co-pilots to Google’s software. When people began riding in one of the vehicles, they paid close attention to what the car was doing and to activity on the road around them, which meant the hand-off between person and machine was smooth. But that interest faded to indifference over weeks and months as people became too trusting of the car’s abilities. “Humans are lazy,” says Fairfield. “People go from plausible suspicion to way overconfidence.”

That convinced Google it had to give up on switching between human and machine control, says Fairfield. That also ruled out building on top of conventional car designs, because they assume a human is on hand and ready to take over in the event of an emergency.

“If the car detects there’s something wrong with the power steering, it cuts it out and trusts you,” said Fairfield. “Same with [power-assisted] brakes—they go limp but you can still stop the vehicle.” Google’s tests suggest that anyone accustomed to a self-driving car would be unlikely to be ready take over in the event of such a failure.

And so Google’s new vehicle design takes a leaf out of NASA’s design book to cope with such eventualities. “It doesn’t have a fallback to human—it has redundant systems,” said Fairfield. “It has two steering motors, and we have various ways we can bring it to a stop.”

The car is powered by an electric motor roughly equivalent to that used in the Fiat 500e and has a range of around 100 miles. Its maximum speed is 25 miles per hour to reduce the severity of injuries to pedestrians in the event of a crash, says Fairfield. The front of the vehicle is made of plastic material intended to cushion any impact with a human. Google says it intends to build up a fleet of 100 of the vehicles for testing this summer. However, existing laws mean that only versions that have had conventional controls installed can be tested on public roads.

Fairfield says that the decision to make a purely autonomous vehicle also had the benefit of bringing Google more in line with the company’s original vision of something that could “drive everywhere for everybody.” That more strongly differentiates Google’s approach to automated vehicles from those of conventional automakers, who have pledged to keep humans in ultimate control of their vehicles (see “Driverless Cars Are Further Away Than You Think”).

However, Google’s new focus sets it on a more difficult path to getting its technology into commercial production. The company previously decided to focus on freeway driving because it is a relatively manageable task for software to take on. The new vehicle will have to cope with the much more challenging conditions on urban roads.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.