Intel Touts New Ultra-High-Speed Wireless Data Technology
Intel says it has prototyped a chip-based antenna array that can sit in a milk-carton-sized cellular base station. The technology could turbocharge future wireless networks by using ultrahigh frequencies.
Intel’s technology, known as a millimeter wave modular antenna array, is expected to be demonstrated today at the Mobile World Congress conference in Barcelona, Spain, says Ali Sadri, director of the millimeter wave standards and advanced technology group at Intel.
The technology could take ultrafast capabilities that Samsung and researchers at New York University demonstrated last year using benchtop-scale equipment (see “What 5G Will Be—Crazy Fast Wireless Tested in New York City) and pack it into a box-sized gadget. The idea is that cities would be carpeted with such small stations—with one every block or two—and be capable of handling huge amounts of data at short ranges.
Any one such cell could send and receive data at speeds of more than a gigabit per second over up to few hundred meters—and far more at shorter distances—compared to about 75 megabits per second for the latest standard, known as 4G LTE.
For mobile cellular communications, both the Intel and Samsung technologies could eventually use frequencies of 28 or 39 gigahertz or higher. These frequencies are known as millimeter wave and carry far more data than those used in cellular networks today. But they are easily blocked by objects in the environment—and even water droplets in the air. So they’ve traditionally been seen as impractical for mobile devices.
To get around the blockage problem, processors dynamically shape how a signal is combined among 64, 128, or even more antenna elements, controlling the direction in which a beam is sent from each antenna array, making changes on the fly in response to changing conditions.
Several groups are working on such antenna arrays, but Intel says its version is more efficient. “We can scale up the number of modular arrays as high as practical to increase transmission and reception sensitivity. The barrier is only regulatory issues, not technological ones,” Sadri says.
A major problem is finding a way to get so many antennas into a mobile device. The NYU technology used a benchtop gadget hauled around the sidewalks of Manhattan for testing. It steers beams mechanically toward intended users. The Intel chip does the same thing by shaping the direction of the signal electronically, and is now packaged in a gadget smaller than a shoebox.
A number of companies are betting next-generation wireless technologies will need to use millimeter wave links to deliver all the data people want. The European Commission, for example, last year launched a $1.8 billion 5G research effort to help develop this and other technologies.
Keep Reading
Most Popular
DeepMind’s cofounder: Generative AI is just a phase. What’s next is interactive AI.
“This is a profound moment in the history of technology,” says Mustafa Suleyman.
What to know about this autumn’s covid vaccines
New variants will pose a challenge, but early signs suggest the shots will still boost antibody responses.
Human-plus-AI solutions mitigate security threats
With the right human oversight, emerging technologies like artificial intelligence can help keep business and customer data secure
Next slide, please: A brief history of the corporate presentation
From million-dollar slide shows to Steve Jobs’s introduction of the iPhone, a bit of show business never hurt plain old business.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.