Skip to Content
77 Mass Ave

A Golden On-Off Switch

Gold nanoparticles could be used to regulate blood clotting.
October 22, 2013

Using gold nanoparticles, MIT researchers have devised a new way to turn blood clotting on and off. The particles, which are controlled by infrared laser light, could promote wound healing or help doctors regulate blood clotting in patients undergoing surgery.

a colorized electron micrograph
A colorized electron micrograph shows red blood cells with gold nanorods (yellow dots) on their surfaces. (The blue is a polymer used to fix the cells for imaging.) The image below is an electron micrograph of gold nanorods.
an electron micrograph of gold nanorods

Blood clotting is produced by a long cascade of protein interactions, culminating in the formation of fibrin, a fibrous protein that seals wounds. Heparin and other blood thinners interfere with this process by targeting several of the reactions that occur during the blood-clotting cascade. But there’s no way to counteract the effects of blood thinners. “It’s like you have a light bulb, and you can turn it on with the switch just fine, but you can’t turn it off. You have to wait for it to burn out,” says Kimberly Hamad-Schifferli ’94, a technical staff member at MIT Lincoln Laboratory. She says a better solution would be an agent that targets only the last step—the conversion of fibrinogen to fibrin, a reaction mediated by an enzyme called thrombin.

Several years ago, scientists discovered that DNA with a specific sequence inhibits thrombin by blocking the site where it would typically bind to fibrinogen. The complementary DNA sequence can shut off the inhibition—and turn blood clotting back on—by binding to the original thrombin-inhibiting DNA strand and preventing it from attaching to thrombin.

Hamad-Schifferli and her colleagues had previously shown that gold nanorods bound to drugs or other compounds can be designed to release them when exposed to infrared light. The size of the nanorod determines the wavelength of light that will activate this process. To manipulate the blood-­clotting cascade, the researchers loaded a smaller gold nanorod (35 nanometers long) with the DNA thrombin inhibitor; a larger particle (60 nanometers long) was loaded with the complementary DNA strand.

Under the correct wavelength of infrared light, the electrons within the gold become very excited and generate so much heat that they melt slightly, taking on a more spherical shape and releasing their DNA payload.

The researchers have successfully tested the particles in human blood samples and are now engineering them so they can travel to injury sites where they would be needed.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.