Skip to Content
77 Mass Ave

The Moon’s Bumpy Gravity

Simulations based on lunar satellite data explain gravitational anomalies.
August 21, 2013

Ever since the first satellites were sent to the moon to scout landing sites for Apollo astronauts, scientists have noticed a peculiar phenomenon: as these probes orbited the moon, passing over certain craters and impact basins, they periodically veered off course, plummeting toward the lunar surface before pulling back up.

moon map
Red and blue represent stronger gravity gradients in this moon map based on data from NASA’s GRAIL mission.

As it turns out, the cause of such bumpy orbits was the moon itself. Over the years, scientists have observed that its gravity is stronger in some regions than others, creating a “lumpy” gravitational field. In particular, a handful of impact basins exhibit an unexpectedly strong gravitational pull. Scientists, who suspect that the explanation has to do with an excess distribution of mass below the lunar surface, have dubbed these regions mass concentrations, or “mascons.”

Exactly how these mascons came to be has remained a mystery—until now.

Using high-resolution gravity data from NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission, researchers at MIT and Purdue University mapped the structure of several mascons and found that their gravitational fields resemble a bull’s-eye pattern: a center of strong gravity surrounded by alternating rings of weak and strong gravity.

To figure out what caused this gravitational pattern, the team created a computer model of lunar impacts and ran the model forward to simulate geological repercussions in the moon’s crust and mantle over both the short and long term. They found that the simulations reproduced the bull’s-eye pattern under just one scenario.

When an asteroid crashes into the moon, it sends material flying out, creating a dense band of debris around the crater’s perimeter. The impact sends a shock wave through the moon’s interior, reverberating within the crust and producing a counterwave that draws dense material from the lunar mantle toward the surface, creating a dense center within the crater. After hundreds of millions of years, the surface cools and relaxes, creating a bull’s-eye that matches today’s gravitational pattern.

This tumultuous chain of events was probably what led to today’s lunar mascons, says Maria Zuber, a professor of geophysics in the Department of Earth, Atmospheric and Planetary Sciences. The team’s results were published in Science.

“For the first time, we have a holistic understanding of the process that forms mascons,” says Zuber, who is also GRAIL’s principal investigator and MIT’s vice president for research. “There will be more details that emerge for sure, but the quality of the GRAIL data enabled rapid progress on this long-standing question.”

Keep Reading

Most Popular

This startup wants to copy you into an embryo for organ harvesting

With plans to create realistic synthetic embryos, grown in jars, Renewal Bio is on a journey to the horizon of science and ethics.

VR is as good as psychedelics at helping people reach transcendence

On key metrics, a VR experience elicited a response indistinguishable from subjects who took medium doses of LSD or magic mushrooms.

This nanoparticle could be the key to a universal covid vaccine

Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.