Skip to Content

Cyborg Parts

Princeton researchers, using a 3-D printer, have built a bionic ear with integrated electronics.

Lab-made organs could do more than just serve as ready options for patients in need: with the right blend of biology and materials science, they might even be able to endow people with superhuman abilities. 

That’s what researchers at Princeton University see as the future of tissue engineering, and they believe 3-D printing is the way there. Michael McAlpine and members of his lab recently reported that a 3-D printer could build a bionic ear capable of detecting frequencies a million times higher than the normal range of hearing.

The ear demonstrates how 3-D printing can seamlessly bring together electronics and biological tissues. Normally, these materials don’t play well together—one is rigid and fractures easily, while the other is soft and flexible. But with 3-D printing, the two can be fabricated together, says McAlpine. “It’s a way you can naturally intertwine everything together into a three-dimensional format,” he says. This could help researchers make body tissues with integrated devices that can monitor health, or even build cyborg organs that augment conventional senses. 

The team started with an ear because the shape is difficult to re-create with traditional tissue engineering. Also, much of an ear is cartilage, which lacks blood vessels—structures that elude tissue engineers (for now).

To build the bionic organ, the printer is guided by a computer model of an ear to which the team added the model of an internal antenna coil connected to an external electrode. Layer by layer, the machine alternates among three “inks”: a mix of bovine cartilage-forming cells suspended in a thick goo of hydrogel; a suspension of silver nanoparticles to form the coil and external cochlea-shaped electrodes; and silicone to encase the electronics. The silver nanoparticles are packed tightly so they can conduct electricity. “It acts as a metal, but because they are nanoparticles, you can print them in a way that you couldn’t normally print a metal,” McAlpine says. 

Printing takes about four hours. Then the ear is bathed in a nutrient-rich broth so that the cells can grow, produce collagen and other molecules, and replace their original surroundings with cartilage. 

With its fully embedded coil, the bionic ear can detect and transmit radio signals—but not sound waves. McAlpine says that functionality could be added to future models by integrating piezoelectric materials, which convert mechanical energy into electrical energy. One day these devices could help a person hear through the same mechanism used to connect cochlear implants, or perhaps provide a sixth sense of electromagnetic reception.

Next McAlpine wants to expand the range of objects a 3-D printer can produce. “There are significant challenges,” he says. But with higher-resolution printers, he thinks, his team will be able to introduce higher-end electronics. 

Beyond enabling biological tissues to incorporate materials with exceptional properties, 3-D printing could address a tissue–engineering challenge: how to grow organs with blood vessels. “Vasculature networks have an incredibly complicated geometry,” McAlpine says. Such a breakthrough would be key to printing organs that contain blood vessels, such as livers, kidneys, and hearts.

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

digital twins concept
digital twins concept

How AI could solve supply chain shortages and save Christmas

Just-in-time shipping is dead. Long live supply chains stress-tested with AI digital twins.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.