Skip to Content

Cyborg Parts

Princeton researchers, using a 3-D printer, have built a bionic ear with integrated electronics.

Lab-made organs could do more than just serve as ready options for patients in need: with the right blend of biology and materials science, they might even be able to endow people with superhuman abilities. 

That’s what researchers at Princeton University see as the future of tissue engineering, and they believe 3-D printing is the way there. Michael McAlpine and members of his lab recently reported that a 3-D printer could build a bionic ear capable of detecting frequencies a million times higher than the normal range of hearing.

The ear demonstrates how 3-D printing can seamlessly bring together electronics and biological tissues. Normally, these materials don’t play well together—one is rigid and fractures easily, while the other is soft and flexible. But with 3-D printing, the two can be fabricated together, says McAlpine. “It’s a way you can naturally intertwine everything together into a three-dimensional format,” he says. This could help researchers make body tissues with integrated devices that can monitor health, or even build cyborg organs that augment conventional senses. 

The team started with an ear because the shape is difficult to re-create with traditional tissue engineering. Also, much of an ear is cartilage, which lacks blood vessels—structures that elude tissue engineers (for now).

To build the bionic organ, the printer is guided by a computer model of an ear to which the team added the model of an internal antenna coil connected to an external electrode. Layer by layer, the machine alternates among three “inks”: a mix of bovine cartilage-forming cells suspended in a thick goo of hydrogel; a suspension of silver nanoparticles to form the coil and external cochlea-shaped electrodes; and silicone to encase the electronics. The silver nanoparticles are packed tightly so they can conduct electricity. “It acts as a metal, but because they are nanoparticles, you can print them in a way that you couldn’t normally print a metal,” McAlpine says. 

Printing takes about four hours. Then the ear is bathed in a nutrient-rich broth so that the cells can grow, produce collagen and other molecules, and replace their original surroundings with cartilage. 

With its fully embedded coil, the bionic ear can detect and transmit radio signals—but not sound waves. McAlpine says that functionality could be added to future models by integrating piezoelectric materials, which convert mechanical energy into electrical energy. One day these devices could help a person hear through the same mechanism used to connect cochlear implants, or perhaps provide a sixth sense of electromagnetic reception.

Next McAlpine wants to expand the range of objects a 3-D printer can produce. “There are significant challenges,” he says. But with higher-resolution printers, he thinks, his team will be able to introduce higher-end electronics. 

Beyond enabling biological tissues to incorporate materials with exceptional properties, 3-D printing could address a tissue–engineering challenge: how to grow organs with blood vessels. “Vasculature networks have an incredibly complicated geometry,” McAlpine says. Such a breakthrough would be key to printing organs that contain blood vessels, such as livers, kidneys, and hearts.

Keep Reading

Most Popular

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

crypto winter concept
crypto winter concept

Crypto is weathering a bitter storm. Some still hold on for dear life.

When a cryptocurrency’s value is theoretical, what happens if people quit believing?

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.