Eco-Friendly Steelmaking
Conventional steelmaking may be the world’s leading industrial source of greenhouse gases. But a new process developed by MIT researchers could change all that—and produce stronger (and ultimately cheaper) steel.

Worldwide steel production currently totals about 1.5 billion tons per year, and each ton produced generates almost two tons of carbon dioxide, according to industry data. This accounts for about 5 percent of the world’s greenhouse-gas emissions.
The idea for the new method, which was developed by materials chemistry professor Donald Sadoway, assistant professor of metallurgy Antoine Allanore, and Lan Yin, PhD ’12, arose when Sadoway received a grant from NASA to look for ways of producing oxygen on the moon—a key step toward future lunar bases. He found that a process he invented called molten oxide electrolysis could use iron oxide from the lunar soil to make oxygen in abundance.
This method used an iridium anode, but since iridium is expensive and supplies are limited, that’s not a viable approach for bulk steel production on Earth. Finding an alternative wasn’t easy, because molten iron oxide, at about 1,600 °C, “is a really challenging environment,” Sadoway explains. “The melt is extremely aggressive. Oxygen is quick to attack the metal.”
But Allanore managed to solve the problem. The answer was an alloy that naturally forms a thin film of metallic oxide on its surface—thick enough to prevent further attack by oxygen but thin enough for electric current to flow freely through it. The alloy’s constituents, iron and chromium, are “abundant and cheap,” Sadoway says.
In addition to producing no emissions other than pure oxygen, the process lends itself to smaller-scale factories. Conventional steel plants are profitable only if they can produce millions of tons of steel per year, but this new process could be viable for production of a few hundred thousand tons per year, he says.
The process also yields metal of exceptional purity, Sadoway says. And it could be adapted for carbon-free production of other metals and alloys, including nickel, titanium, and ferromanganese.
The technology is still at the laboratory scale, but Sadoway, Allanore, and a former student have formed a company to develop a commercially viable prototype plant. They expect that designing, building, and testing such a facility could take about three years.
Keep Reading
Most Popular

Why China is still obsessed with disinfecting everything
Most public health bodies dealing with covid have long since moved on from the idea of surface transmission. China’s didn’t—and that helps it control the narrative about the disease’s origins and danger.

Anti-aging drugs are being tested as a way to treat covid
Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

These materials were meant to revolutionize the solar industry. Why hasn’t it happened?
Perovskites are promising, but real-world conditions have held them back.

A quick guide to the most important AI law you’ve never heard of
The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.