Skip to Content
77 Mass Ave

Going Under

Study of anesthesia-induced brain-wave patterns could help doctors make sure patients don’t wake up during operations
June 18, 2013

Since the mid-1800s, doctors have used drugs to induce general anesthesia in patients undergoing surgery. However, little is known about how these drugs create such a profound loss of consciousness.

brain-wave test
Spectrographic data represent brain-wave ­frequencies from 44 electrodes attached to the scalp of a volunteer undergoing propofol anesthesia.

In a recent study that tracked brain activity in human volunteers over a two-hour period as they lost and regained consciousness, researchers from MIT and Massachusetts General Hospital (MGH) identified distinctive brain patterns associated with different stages of general anesthesia. Those brain-wave signatures could help anesthesiologists better monitor patients during surgery and make sure they don’t wake up.

Such unintended waking occurs once or twice in 10,000 operations, says Emery Brown, an MIT professor of brain and cognitive sciences and health sciences and technology, who is also an anesthesiologist at MGH.

“It’s not something that we’re fighting with every day, but when it does happen, it creates this visceral fear, understandably, in the public,” he says. “And anesthesiologists don’t have a way of responding, because we really don’t know when you’re unconscious.”

Anesthesiologists now rely on a monitoring system that converts electroencephalogram (EEG) information into a single number between 0 and 100. However, the researchers say, that index actually obscures the information that would be most useful.

In the new study, Brown and Patrick Purdon, an instructor of anesthesia at MGH and Harvard Medical School, worked with colleagues to monitor subjects as they received propofol, a common anesthestic. As the subjects began to lose consciousness, the EEG showed that brain activity in the frontal cortex oscillated in both the low-frequency (0.1 to 1 hertz) and alpha-frequency (8 to 12 hertz) bands. The researchers also found a specific relationship between the oscillations in those two frequency bands: alpha oscillations peaked as the low-frequency waves were at their lowest point.

When the brain reached a slightly deeper level of unconsciousness, a marked transition occurred: the alpha oscillations flipped so their highest points occurred when the low-frequency waves were also peaking.

As the researchers slowly decreased the dose of propofol to bring the subjects out of anesthesia, they saw that brain activity patterns flipped again, so that the alpha oscillations were at their peak when the low-frequency waves were at their lowest point.

Purdon and Brown are now starting a training program at MGH that will help doctors interpret EEG information to better monitor how deeply a patient is anesthetized.

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.