Durable surfaces that can shed water could be useful in a variety of areas, including energy, water, transportation, construction, and medicine. The condensation of water is a crucial part of many industrial processes; most electric power plants and desalination plants, for example, have condensers.

Hydrophobic materials—which prevent water from spreading over a surface, instead causing it to form droplets that easily fall away—can make the condensation process more efficient. But most hydrophobic materials are made from thin polymer coatings that degrade when heated and are easily destroyed by wear. Now MIT researchers, including associate professor Kripa Varanasi and mechanical-engineering postdoc Gisele Azimi, have come up with a new class of hydrophobic ceramics that can endure both extreme temperatures and rough treatment.
Ceramics are great at withstanding extreme temperatures, but they tend to attract water rather than repel it. To address this problem, the MIT team made ceramics out of the so-called rare-earth metals—elements whose unique electronic structure they thought might render the materials hydrophobic.
To test this hypothesis, the team used powder oxides of 13 of the 14 members of the rare-earth metal series (excluding one that is radioactive) and made pellets by compacting them and heating them nearly to their melting point in order to fuse them into solid, ceramic form—a process called sintering. “We thought they should all have similar properties for wetting, so we said, ‘Let’s do a systematic study of the whole series,’” says Varanasi, an associate professor of ocean utilization.
As predicted, all 13 displayed strong hydrophobic properties. “We showed, for the first time, that there are ceramics that are intrinsically hydrophobic,” Varanasi says.
The ceramic forms of rare-earth oxides could be used either as coatings on various substrates or in bulk form. Because their hydrophobicity is an intrinsic chemical property, Azimi says, it persists “even if they are damaged.”
Most previous research on hydrophobic materials and coatings has focused on surface textures and structure rather than on the materials’ chemical properties, Varanasi says. “No one has really addressed the key challenge of robust hydrophobic materials,” he says. “We expect these hydrophobic ceramics to have far-reaching technological impact.”
Keep Reading
Most Popular
A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?
Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.
A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate
Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.
10 Breakthrough Technologies 2023
These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway
Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.