Skip to Content

Will Vertical Turbines Make More of the Wind?

A Caltech researcher thinks arrays of tiny wind turbines could produce cheaper power than big ones.
April 8, 2013

The remote Alaskan village of Igiugig—home to about 50 people—will be the first to demonstrate a new approach to wind power that could boost power output and, its inventors say, just might make it more affordable.

Testing the wind: Three, 10-meter vertical-axis wind turbines at a demonstration facility in California.

For decades, the trend across the wind industry has been to make wind turbines larger and larger—because it has improved efficiency and helped lower costs.

John Dabiri, a professor of aeronautical and bioengineering at Caltech, has a heretical idea. He thinks the way to lower the cost of wind power is to use small vertical-axis wind turbines, while using computer models to optimize their arrangement in a wind farm so that each turbine boosts the power output of its neighbors.

Dabiri has demonstrated the basic idea at a 24-turbine test plot in southern California. Grants totaling $6 million from the Gordon and Betty Moore Foundation and the U.S. Department of Defense will allow him to see if the approach can lower wind power costs in Igiugig. The first 10 turbines will be installed this year, and the goal is to eventually install 50 to 70 turbines, which would produce roughly as much power as the diesel generators the village uses now. Dabiri is also installing turbines at an existing wind farm in Palm Springs, California, using his models to generate power by putting up new turbines between existing ones.

Ordinarily, as wind passes around and through a wind turbine, it produces turbulence that buffets downstream turbines, reducing their power output and increasing wear and tear. Dabiri says that vertical-axis turbines produce a wake that can be beneficial to other turbines, if they’re positioned correctly.

The blades of this type of wind turbine are arranged vertically—like poles on a carousel rather than spokes on a wheel, as with conventional wind turbines. Wind moving around the vertical-axis turbines speeds up, and the vertical arrangement of the blades on downstream wind turbines allows them to effectively catch that wind, speed up, and generate more power. (The spinning blades of a conventional wind turbine would only catch some of this faster wind as they pass through it—this actually hurts the turbine’s performance because it increases stress on the blades.) The arrangement makes it possible to pack more turbines onto a piece of land.

Little wind: At a test plot in Los Angeles County, California, John Dabiri tests his concepts for wind farms made of small, vertical-axis wind turbines.

Dabiri’s wind turbines are 10 meters tall and generate three to five kilowatts, unlike the 100-meter-tall, multi-megawatt machines in conventional wind farms. He says the smaller ones are easier to manufacture and could cost less than conventional ones if produced on a large scale. He also says maintenance costs could be less because the generator sits on the ground, rather than at the top of a 100-meter tower, and thus is easier to access. The performance of the wind farm at Igiugig will help determine whether his estimates of maintenance costs are correct.

Dabiri says small, vertical wind turbines have other advantages. While the noise of conventional wind turbines has led some communities to campaign to tear them down, his turbines are “almost inaudible,” he says. They’re also less likely to kill birds. And their short profile has attracted a $1 million grant from the Department of Defense to study their use on military bases. Because they’re shorter, they interfere less with helicopter operations and with radar than conventional wind turbines.

The approach, however, faces some challenges. Vertical-axis wind turbines aren’t as efficient as conventional ones—half of the time the blades are actually moving against the wind, rather than generating the lift needed spin a generator. As the blades alternatively catch the wind and then move against it, they create wear and tear on the structure, says Fort Felker, director of the National Wind Technology Center at the National Renewable Energy Laboratory. Dabiri, and researchers such as Alexander Smits at Princeton University, say they are working on improved turbine designs to address some of these issues.

Felker notes that Dabiri’s approach will also require installing a thousand times more wind turbines, requiring potentially millions of wind turbines rather than thousands to generate significant fractions of U.S. power supply. And he notes that, over the last several decades, the wind industry has demonstrated that making ever larger wind turbines lowers costs (“Novel Designs are Taking Wind Power to the Next Level,” “Supersized Wind Turbines Head Out to Sea,” and “The Quest for the Monster Wind Turbine Blade.” “Going in the other direction, I believe, will not be successful,” he says. “I don’t think the math works out.”

Felker thinks that Dabiri’s approach might prove fitting for small, isolated places like Igiugig, where simpler construction and maintenance might be important. “But if you’re trying to transform the overall energy economy,” he says, “you’ve got to go big.”

Keep Reading

Most Popular

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

section of Rima Sharp captured by the LRO
section of Rima Sharp captured by the LRO

The moon didn’t die as early as we thought

Samples from China’s lunar lander could change everything we know about the moon’s volcanic record.

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.