Skip to Content

New 3-D Display Could Let Phones and Tablets Produce Holograms

Optical trickery lets a modified LCD produce hologram-like still images and videos.

A new kind of three-dimensional display developed at HP Labs plays hologram-like videos without the need for any moving parts or glasses. Videos displayed on the HP system hover above the screen, and viewers can walk around them and experience an image or video from as many 200 different viewpoints—like walking around a real object.

3D image of an HP logo in RGB
New view: Researchers from HP Labs used their new display to produce an image of the company’s logo.

The screen is made by modifying a conventional liquid-crystal display (LCD), the same kind of display found in most phones, laptops, tablets, and televisions. Researchers hope these 3-D systems will enable new kinds of user interfaces for portable electronics, gaming, and data visualization. The work, carried out at HP Labs in Palo Alto, California, relies on complex physics to make 3-D displays that are as thin as half a millimeter.

Conventional 3-D—the type found in movie theaters—provides the viewer with only one perspective. The key to making a multiview 3-D display is reproducing all the light rays reflecting off an object from every angle and to get a different image to the left and right eye of the viewer. Some systems for producing multiview 3-D images require rapidly spinning mirrors; others use systems of lasers and multiple graphics processors.

The HP display uses nanopatterned grooves, which HP researcher David Fattal, who led the work, calls “directional pixels,” to send light off in different directions. This requires no new moving parts, and the patterns are built into an existing display component, the backlight.

A conventional LCD uses a sheet of plastic or glass that’s covered in bumps that scatter white light and direct it through the display’s color filters, polarizers, and shutters to the viewer. The new 3-D display builds on optics research demonstrating how the path, color, and other properties of light can be manipulated by passing it through materials patterned at the nanoscale.

The HP display replaces the randomly scattering bumps in a normal LCD with deliberately patterned grooves. Each “directional pixel” has three sets of grooves that direct red, green, and blue light in one particular direction. The number of directional pixels determines the number of viewpoints the display can produce. Light from the pixels then passes through a conventional array of liquid crystal shutters that pass or block the light to make a moving image—just like in a conventional LCD.

The HP researchers showed that they could make static images with 200 viewpoints, or videos with 64 viewpoints and 30 frames per second—so far. The number of viewpoints in the video system has been limited by their ability to put the backlight together with the nanopatterned liquid-crystal shutters in the lab. Fattal says the system should ultimately be easy to manufacture, because it’s a modified LCD. The work is described today in the journal Nature.           

Science fiction has provided no shortage of visions of futuristic computer interfaces that allow people to manipulate data, images, and maps by waving their hands through streams of holograms. The technology for tracking gestures is pretty well developed, says Fattal—systems like Microsoft’s Kinect are available off the shelf. All that’s lacking, he says, are practical systems for producing high-quality 3-D images that can be viewed from multiple positions around a screen.

There has been very little innovation in the basic physics for making 3-D images since early in the 20th century, says Gordon Wetzstein, a researcher at the MIT Media Lab’s Camera Culture group. Wetzstein was not involved with the work. Most 3-D televisions and other systems on the market use old optical tricks—special glasses to filter part of the image for the left or right eye, for example—to create the illusion of depth. He says the new display “is transforming a technology that’s been around for 100 years.”

Fattal acknowledges that producing content for the new display requires 200 different images. Some of this image data can be reconstructed digitally—it’s not necessary to have 200 cameras—but for the foreseeable future, the most promising applications for the displays will be in showing computer-generated images. “A 3-D interface for a cell phone or laptop might display different windows next to each other, or architects could use a tablet to show a 3-D model to a customer, instead of building a physical model,” Fattal says. “Or you might use a smart watch to view Google Maps in 3-D.”

David Krum, codirector of the University of Southern California’s Mixed Reality Lab, says many computer scientists are now working on content development for 3-D systems. Part of the challenge, he says, is understanding human perception and which light rays can be left out while still creating the perception of a 3-D image for the viewer. Without addressing this, mobile 3-D will create big bandwidth and data-storage burdens, he says.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.