Skip to Content
77 Mass Ave

Setting Silk to Music

Translating molecules into math and music could lead to better synthetic structures
February 20, 2013

Pound for pound, spider silk is one of the strongest and most resilient materials known. But new research by MIT’s Markus Buehler and others might point the way to even better materials for a variety of applications—and an ear for music might be a key to creating these synthetic substances.

artificial spider silk
This diagram shows the molecular structure of a version of artificial spider silk that formed strong, well-linked fibers. Musical compositions based on such diagrams reveal how versions of the silk differ.

Buehler, a professor of civil and environmental engineering, has teamed up with a biomedical engineer, a materials scientist, a mathematician, and a music professor, among others, to devise a new approach to developing biologically inspired molecules. “We’re trying to approach making materials in a different way,” Buehler explains, “starting from the building blocks”—in this case, the protein molecules that form the structure of silk.

Buehler’s previous research determined that fibers with a particular kind of hierarchical structure help to give silk its exceptional properties. Molecules form crystals or disordered aggregates, which are in turn assembled in particular sequences, and those sequences themselves are arranged in particular ways. For its initial attempt at synthesizing a new material, the team chose to look at variations on that basic structure.

This approach, which began with detailed computer modeling, led to some surprising results. Some arrangements worked much better than others that had seemed equally promising. “This taught us that it’s not sufficient to consider the properties of the protein molecules alone,” Buehler says. It’s also necessary to “think about how they can combine to form a well-connected network at a larger scale.”

The team found that one potentially useful way of thinking about these larger-scale properties is by translating them into music. The different levels of silk’s structure, Buehler says, are analogous to the hierarchical elements that make up a musical composition—individual notes assembled into measures, which in turn form a melody, and so on. The team enlisted the help of composer John McDonald, a professor of music at Tufts, and MIT postdoc David Spivak, a mathematician who specializes in category theory. Together, using analytical tools derived from category theory to describe the protein structures, the team figured out how to translate the details of the artificial silk’s structure into musical compositions.

The differences were quite distinct: strong but useless protein molecules translated into music that was aggressive and harsh, Buehler says, while molecules that formed usable fibers resulted in music that sounded much softer and more fluid.

Buehler hopes that musical compositions might also be used to predict how well new variations of the material might perform.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.