Skip to Content

Bionic Muscles Toughen Up

Hybrid materials made of cardiac cells and carbon nanotubes might patch damaged hearts and provide muscle for robots made of living tissues.
February 11, 2013

The tissues of the heart are mechanically tough and electrically conductive, and they keep a strong, rhythmic beat—properties that are tough to mimic in the lab. But a new hybrid material that combines cell-friendly gel, strong, conductive carbon nanotubes, and living cardiac cells mimics natural heart tissue more successfully than previous attempts. Eventually the new material could be useful in both medical and robotic applications.

The bionic tissues, made by Ali Khademhosseini, a professor at the Harvard-MIT Division of Health Sciences and Technology in Cambridge, Massachusetts, could serve as muscles for biological machines—moving, programmable living tissues that take synthetic biology beyond single cells. A lot of the things that natural tissues and biological cells can do, such as sense and respond to their environment, are hard for engineers to achieve with the synthetic materials used in conventional robotics. Researchers hope that building machines from biological materials like heart tissue will expand what’s possible. The new tissues can swim untethered in water, swing back and forth, and perform other moves programmed by controlling their shape and thickness.

If these materials turn out to be safe for use in the human body, they might also be used to patch tissue damaged by heart attacks. Researchers engineering heart tissues in the lab often use polymers and gels to provide cardiac cells with an environment in which they will grow and behave as they do in the body. The resulting materials have two critical flaws, says Khademhosseini. They don’t match the electrical conductivity of heart tissue, nor are they as mechanically strong.

“When the heart beats, cells respond to that mechanical force and release chemicals that encourage growth,” says Thomas Webster, a chemical engineer at Northeastern University in Boston, who was not involved with the work. And if the patch is less conductive than the rest of the heart, electrical signals might experience delays. If a patch without just the right properties is placed on a patient’s heart, it might not grow properly, and it might not be able to beat in time with the rest of the heart, says Webster.

The Cambridge group solves this problem by adding carbon nanotubes to tissue-engineering gels. The result is a squishy gel with a tangle of strong, conductive carbon fibers embedded in it. Khademhosseini seeded cardiac cells on these gels and studied their properties. The bionic tissues were similar in elasticity to rat heart—much more elastic than previous lab-made materials. They also had much better conductivity. And the tissues were better at heart tissue’s main job, beating in synchrony. Khademhosseini exposed the bionic tissue to various chemicals and found that it was it was relatively resistant to damage—perhaps because the carbon nanotubes provide electrical links between cells that can maintain communication even when under stress. This work is described online in the journal ACS Nano.

Webster says before any medical applications can be considered, researchers will have to demonstrate that carbon nanotubes are not toxic—especially since they are not biodegradable and would be likely to stay in the body for a long time. He notes that even if the carbon materials themselves are safe, the manufacturing process for nanotubes might leave traces of toxic metal catalysts.

Khademhosseini says the first use for the materials may be in biological machines used to assess and restore toxic environments or repair buildings. Last year, researchers demonstrated free-swimming jellyfish-like robots and walking biological machines built from heart tissues and polymers. But without conductive materials, their applications are limited, says Rashid Bashir, a bioengineer at the University of Illinois at Urbana-Champaign, who made the walking robot. “If you can pattern the base material, you could make circuits inside,” he says.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.