Skip to Content

Grounded Boeing 787 Dreamliners Use Batteries Prone to Overheating

A fire last week and a forced landing today have brought the possibility of such problems to the forefront.
January 16, 2013

Two major safety incidents involving Boeing 787 Dreamliners have caused two Japanese airlines to ground their fleets of the aircraft. The problems may be linked to a battery chemistry that’s particularly prone to causing fires.

Burned battery: This lithium-ion battery from a 787 Dreamliner caught fire in a plane traveling from Tokyo to Boston last week.

Earlier today, a plane in Japan was forced to make an emergency landing after reports of a battery warning light and burning smell. Last week, a battery caught fire on a plane on the ground in Boston. In both cases, the problems may be related to Boeing’s decision to use a kind of lithium-ion battery chemistry that overheats and catches fire more readily than others.

It’s not yet clear whether the problems in the 787s originated with the batteries. Faults in the electronic controls have been implicated in other lithium-ion battery fires. According to reports, inspectors found liquid leaking from the 787’s batteries after the forced landing in Japan today. The battery was also discolored, but it wasn’t clear if it had caught fire.

Lithium-ion batteries have been known to cause fires in cell phones, laptops, and electric vehicles. But such problems are extremely rare, and usually result from damage to the battery—such as piercing or overcharging—or problems with the manufacturing process that introduce flaws in the cells.

Boeing’s 787 is the first commercial aircraft to use lithium-ion batteries, according to GS Yuasa, the Japanese battery manufacturer that supplies the batteries. The company also supplies batteries for the International Space Station and electric railcars, among other applications.

The chemistry—and safety—of lithium-ion batteries varies. According to GS Yuasa’s website, the batteries it uses for Boeing’s 787 use lithium cobalt oxide electrodes. These are known for high-energy storage capacity, but other battery chemistries, such as lithium iron phosphate, are more resistant to overheating. Because of safety concerns, many electric vehicle makers have shifted to alternative chemistries, sacrificing some energy storage capacity.

Because the electrolyte materials used are flammable, no lithium-ion batteries are completely safe. Some companies are developing a version that doesn’t use these electrolytes (see “Solid-State Batteries”). Consequently, battery makers install various safety features, including electronics designed to prevent overcharging. They also often include sensors and cooling systems.

According to GS Yuasa, its battery for the 787 “comes with battery management electronics which guarantees multiple levels of safety features.” A specification sheet for the batteries warns, “Inappropriate handling or application of the cells can result in reduced cell life and performance, electrolyte leakage, high cell temperatures, and even the possibility of smoke generation and fire.”

Boeing declined to comment on its selection of battery chemistries. A spokesperson says it is aware of the incident in Japan and is working with the airline and regulatory bodies to address it.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.