Skip to Content

Physicists Use Electrical Signals From Slime Mould to Make Music

Using the electrical signals generated by slime mould to make music creates an instrument musicians can ‘play’ by zapping the creature with light

Physarum polycephalum, better known as slime mould, is a single-celled creature that has attracted considerable attention in recent years for its ability to compute in unconventional ways. Various research groups have watched in barely disguised amazement as these single cells have solved mazes, recreated national motorway networks and even anticipated the timing of periodic events.

Now this extraordinary creature has added another skill to its box of tricks–the ability to make music, or at least to create sound in a controlled fashion.  

Physarum grows by creating a network of protoplasmic tubes that stretch from one source of food to another. Much of this creature’s computing power comes from its ability to optimise the properties of this network. 

Today, Eduardo Miranda at the University of Plymouth in the UK and a couple of pals say they’ve grown a Physarum cell in a petri dish lined with six electrodes, each topped with an oat flake to attract the protoplasmic tubes.

Miranda and co then measured the electrical activity at each electrode every second as the tubes grew across them, a process that took about a week to cover all the electrodes. They then plotted the results against time to compare the activity in different electrodes.

To create a sound, Miranda and co used the signal from each electrode to control the frequency of an audio oscillator. With each electrode controlling a different range of frequencies, they then added the outputs from all the oscillators to create a complex sound that represents the activity of the Physarum

Of course, this kind of mixing is rather arbitrary but Miranda and co are mainly interested in the sound production method. They say it is possible to control the electrical activity in different parts of the network of tubes by zapping it with light.

In a sense, this allows them to “play” the Physarum like a musical instrument.

“Our own experiments…demonstrated that varying illumination gradients are good means to tune the plasmodium to produce specific oscillatory behaviours,” they say.

They go even further in abstracting this process. “The time it takes to run experiments with Physarum polycephalum can be tedious,” they complain. So instead of growing the slime mould for real, they also simulated the process on computer to speed up the process of music making, the result being a kind of Physarum synthesiser synthesiser.  

That’s certainly a bizarre form of music making but Miranda has put it to good use. Earlier this year, he premiered a piece called Die Lebensfreude in Portugal that featured the Physarum electro-acoustics. 

If the goal is to push music-making beyond conventional bounds, Miranda and his colleagues must surely have succeeded. Sadly, we’re unable to judge the result since there is no link in the paper or on his website to any of the resulting sound files.

Ref: arxiv.org/abs/1212.1203: Sounds Synthesis with Slime Mould of Physarum Polycephalum

Keep Reading

Most Popular

2021 tech fails concept
2021 tech fails concept

The worst technology of 2021

Face filters, billionaires in space, and home-buying algorithms that overpay all made our annual list of technology gone wrong.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

surgery
surgery

A gene-edited pig’s heart has been transplanted into a human for the first time

The procedure is a one-off, and highly experimental, but the technique could help reduce transplant waiting lists in the future.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.