Skip to Content

Company Aims to Cure Blindness with Optogenetics

The technique would retrain cells that typically don’t respond to light.

One biotech startup wants to restore vision in blind patients with a gene therapy that gives light sensitivity to neurons that don’t normally possess it.

The attempt, by Ann Arbor, Michigan-based Retrosense Therapeutics, will use so-called optogenetics. Scientists have used the technique over the last few years as a research tool to study brain circuits and the neural control of behavior by directing neuron activity with flashes of light. But Retrosense and others groups are pushing to bring the technique to patients in clinical trials.

The idea behind Retrosense’s experimental therapy is to use optogenetics to treat patients who have lost their vision due to retinal degenerative diseases such as retinitis pigmentosa. Patients with retinitis pigmentosa experience progressive and irreversible vision loss because the rods and cones of their eyes die due to an inherited condition. If the company is successful, the treatment could also help patients with the most common form of macular degeneration, which affects nearly a million people in the United States. The U.S. Food and Drug Administration hasn’t approved any therapies for either condition.

Retrosense is developing a treatment in which other cells in the retina could take the place of the rods and cones, cells which convert light into electrical signals. The company is targeting a group of neurons in the eye called ganglion cells. Normally, ganglion cells don’t respond to light. Instead, they act as a conduit for electrical information sent from the retina’s rods and cones. The ganglion cells then transmit visual information directly to the brain.

Doctors would inject a non-disease causing virus into a patient’s eye. The virus would carry the genetic information needed to produce the light-sensitive channel proteins in the ganglion cells. Normally, rods, cones, and other cells translate light information into a code of neuron-firing patterns that is then transmitted via the ganglion cells into the brain. Since Retrosense’s therapy would bypass that information processing, it may require the brain to learn how to interpret the signals. 

So far, Retrosense and its academic collaborators have shown that the treatment can restore some vision-evoked behaviors in rodents. The treatment also seems safe in nonhuman primates. The optogenetically modified ganglion cells of these primates are light-responsive, but behavioral tests aren’t possible, as there are no nonhuman primate models of retinal degeneration, says Retrosense CEO Sean Ainsworth.

Retrosense plans to begin its first clinical trial in 2013 with nine blind retinitis pigmentosa patients.

Keep Reading

Most Popular

10 Breakthrough Technologies 2024

Every year, we look for promising technologies poised to have a real impact on the world. Here are the advances that we think matter most right now.

Scientists are finding signals of long covid in blood. They could lead to new treatments.

Faults in a certain part of the immune system might be at the root of some long covid cases, new research suggests.

AI for everything: 10 Breakthrough Technologies 2024

Generative AI tools like ChatGPT reached mass adoption in record time, and reset the course of an entire industry.

What’s next for AI in 2024

Our writers look at the four hot trends to watch out for this year

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.