Skip to Content

Genomics Solves Medical Mystery

Tracing bacterial genomes revealed the surprising way that an infection spread throughout a hospital.
August 22, 2012

Between June and December of last year, 17 patients at the Clinical Center of the U.S. National Institutes of Health in Bethesda, Maryland, came down with a bloodstream infection; six of them died. Doctors knew that a patient had arrived with Klebsiella pneumoniae in June, but it wasn’t clear how the bacterium, a common culprit in hospital-acquired infections, was passed around, or whether several different patients had simply brought it in with them.

Killer agent: The bacterium Klebsiella pneumoniae, a common cause of hospital-acquired infections, can be lethal.

By taking bacterial samples from the patients and certain hospital equipment and analyzing the genomes of the different strains, researchers traced the organism’s meandering path as it cut a deadly swath through the facility. The study, published today in Science Translational Medicine, represents the first such use of whole-genome scanning in a hospital during an outbreak.

The sequencing was possible because it is now cheap and fast enough to do in near-real time, says Julie Segre, an author of the paper and a senior investigator at the National Human Genome Research Institute. Each of the genome sequences cost about $2,000 last year; the price has since dropped to about $500.

The scans revealed that the germs originated from one patient, that their path through the hospital was different than expected, and that current methods for combating such hospital-acquired infections are inadequate. Instead of jumping from the first patient who showed signs of the blood infection to the second, as the epidemiologists had expected, the bacterium had taken a much more complex route. Patient 1, a 43-year-old New Yorker, passed it independently to patients 3, 4, and 8, whose cases appeared more than a month later. Patient 8 didn’t pass it further, but the strain from patient 3 was found in patients 5 and 2, and the rest of the patients got it from patient 4, the analysis showed.

Researchers believe the germ was transmitted on hospital workers’ hands. Moreover, scans of bacteria from one patient’s ventilator showed that the typical cleaning process was inadequate to rid the machine of the bacteria. Although the germs were not transmitted via the ventilator in this case, they may very well be transmitted that way elsewhere, says Tara Palmore, an infectious disease physician and deputy hospital epidemiologist at the Clinical Center, who was an author of the study.

George Weinstock, associate director of the Genome Institute at Washington University in St. Louis and a professor of genetics and microbiology there, says that the extra level of detail provided by whole-genome sequencing allowed epidemiologists to truly understand the path of disease for the first time. The lessons learned from such detailed tracking, he says, “are going to lead to more sophisticated epidemiological studies in public health, so that we’re more often going to get the true answer to what’s going on, rather than the simplest.” The next step, he says, will be to do this kind of analysis in real time, so that far fewer people will die before an outbreak is stemmed.

The outbreak highlights the strong need for improved infection control protocols. “We have very few antibiotics left,” Segre says. “The only way to stop this is with better infection control. The best way to keep the American people healthy is to keep them from getting sick.”

Keep Reading

Most Popular

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

brain map
brain map

This is what happens when you see the face of someone you love

The moment we recognize someone, a lot happens all at once. We aren’t aware of any of it.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.