Skip to Content
MIT News magazine

Tiny Attackers

Antibiotic nanoparticles could target drug-resistant bacteria
August 21, 2012

Over the past several decades, bacteria have become increasingly resistant to available drugs. One strategy that might combat such resistance would be to overwhelm bacterial defenses by using highly targeted nanoparticles to deliver large doses of existing antibiotics.

In a step toward that goal, researchers at the Institute and Brigham and Women’s Hospital have developed a nanoparticle designed to evade the immune system and home in on infection sites to unleash a focused antibiotic attack.

This approach would mitigate the side effects of some antibiotics and protect the beneficial bacteria that normally live inside our bodies, says Aleks Radovic-Moreno, an MIT graduate student and lead author of a recent paper describing the particles in the journal ACS Nano.

The team, led by Institute Professor Robert Langer of MIT and Omid Farokzhad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women’s, created the new nanoparticles from a polymer capped with polyethylene glycol (PEG). PEG is commonly used for drug delivery because it is nontoxic and can help nanoparticles evade detection by the immune system to travel through the bloodstream. 

Their next step was to induce the particles to target bacteria. Researchers have previously tried giving drug-containing particles a positive charge, which attracts them to bacteria’s negatively charged cell walls. However, the immune system tends to clear positively charged nanoparticles from the body before they can encounter bacteria.

To overcome this obstacle, the MIT and Brigham and Women’s team designed nanoparticles that can switch their charge depending on their environment. While they circulate in the bloodstream, the particles have a slight negative charge. But when they encounter an infection site, which tends to be slightly acidic, they gain a positive charge, allowing them to bind tightly to bacteria and release their drug payload. 

These particles were designed to deliver vancomycin, a common treatment for drug-resistant infections, but they could be modified to deliver other antibiotics or combinations of drugs. 

Although further development is needed, the researchers hope the high doses delivered by their particles could eventually help overcome bacterial resistance. “When bacteria are drug resistant, it doesn’t mean they stop responding,” Radovic-Moreno says. “It means they respond, but only at higher concentrations. And the reason you can’t achieve these concentrations clinically is because antibiotics are sometimes toxic, or they don’t stay at that site of infection long enough.” 

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.