Skip to Content

Heat-Driven Water Splitting

An improved catalyst could lead to cheaper ways of producing hydrogen from water
August 21, 2012

Source: “Low-Temperature, Manganese Oxide-Based, Thermochemical Water ­Splitting Cycle”

Mark Davis et al.

Proceedings of the National Academy of Sciences 109(24): 9260–9264

Results: A novel process for using heat to split water uses relatively low temperatures (850 °C versus well over 1,000 °C for earlier approaches) and doesn’t produce toxic or corrosive intermediate products.

Why it matters: If producing hydrogen through electrolysis can become greener and less expensive, it might be more cost-effective than getting hydrogen out of natural gas, which is a process that emits carbon dioxide. This will be especially important if automakers start selling large numbers of vehicles powered by hydrogen fuel cells.

Methods: The researchers developed a process that uses sodium carbonate and manganese oxide to help facilitate water-splitting reactions. These materials are modified by a series of chemical reactions that change the way they react with water, producing hydrogen gas in one step and oxygen in another. The reactions form a closed cycle: at the end of the process the materials are returned to their original state, so they can be used many times.

Next Steps: The researchers aim to lower the working temperatures still further, with the goal of making it practical to split water using waste heat from industrial processes and power plants.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

protein structures
protein structures

DeepMind says it will release the structure of every protein known to science

The company has already used its protein-folding AI, AlphaFold, to generate structures for the human proteome, as well as yeast, fruit flies, mice, and more.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.