Skip to Content

Personal Defenses

Cataloguing the uniqueness of an individual immune system offers a new understanding of disease.
August 21, 2012

Our immune system defends us from attack by foreign agents such as viruses and bacteria, in most cases without our even knowing. Much of the work is done by the B and T cells, known as lymphocytes. They produce proteins that recognize antigens and trigger the appropriate immune responses to remove the invaders.

To combat a wide variety of pathogens, an individual’s defensive proteins, known as immunoglobulins and T-cell receptors, have to be extremely diverse in their molecular structure. It is estimated that a healthy individual carries 10 million different versions of these proteins. As the Nobel Prize–­winning scientist Susumu Tonegawa explained in 1976, this diversity is the result of special genetic recombination and mutation at work in lymphocytes when they divide. The variety of defensive proteins an individual harbors at one time is known collectively as the immune repertoire.

A person’s immune repertoire is dynamic, changing continuously under the influence of genetic background, age, vaccinations, environmental exposure, and diseases such as immune disorders. One reason some elderly people are more susceptible to infections is that the diversity of their repertoire declines.

Immunologists have long wanted a way to document the diversity of a person’s immune repertoire. Only today is this becoming possible. Directly identifying the immune proteins in all their variety proved too challenging, but the discovery of the genetic machinery that creates those proteins suggested that sequencing the genes would be an easier alternative. In the last five years, advances in massively parallel sequencing technologies have made that feasible. Scientists can now affordably and quickly examine the genes from millions of lymphocytes taken from a single individual to understand the range of different proteins these can produce, obtaining a broad statistical catalogue of the subject’s immune repertoire and its diversity.

High-throughput sequencing of a person’s immune repertoire has many potential applications in medicine. The first clinical tests based on it have recently become available as a way to monitor lymphoma and leukemia patients for relapse. As scientists begin to study the repertoires of many different individuals over time, they may discover novel markers that could be used to assess the efficacy of vaccinations, the progress of autoimmune disorders, and the response of cancers to immunotherapy. The immune repertoire may also become an important part of the coming age of personalized medicine, since evidence suggests that autism, chronic fatigue syndrome, and other poorly understood conditions may be related to immune-­system dysfunction. In the far future, knowledge about the immune repertoire could even inform genetic engineering to give a person super-immunity or to reverse immune disorders.

Christina Fan is a research scientist with ImmuMetrix, a company working on techniques for immune-repertoire sequencing.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

thermal image of young woman wearing mask
thermal image of young woman wearing mask

The covid tech that is intimately tied to China’s surveillance state

Heat-sensing cameras and face recognition systems may help fight covid-19—but they also make us complicit in the high-tech oppression of Uyghurs.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.