Skip to Content

IBM Breaks Efficiency Mark with Novel Solar Material

An IBM-led research teams says that a combination of copper, zinc, tin, and selenium (CZTS) could meet current thin-film efficiencies with more abundant materials.
August 20, 2012

IBM says it has made technical progress on a solar technology that researchers hope will yield efficient thin-film solar cells made from abundant materials.

IBM researchers worked with Japanese thin-film solar company Solar Frontier to get higher solar efficiencies for solar cells made from more abundant materials than current thin-film cells. Credit: IBM Research

IBM photovoltaic scientists Teodor Todorov and David Mitzi on Friday detailed the findings of a paper that showed the highest efficiency to date for solar cells made from a combination of copper, zinc, tin, and selenium (CZTS). Published in Advanced Energy Materials, the technical paper described a CZTS solar cell able to convert 11.1 percent of solar energy to electricity.

 That level of efficiency is a significant jump from the 10.1 percent efficiency Mitzi and colleagues showed last year. (See, Efficiency Solar Cells from Cheaper Materials). The paper also argues that CZTS solar cells could achieve efficiencies high enough to make them commercially viable.

The benchmark CZTS the IBM-led research group is pursuing is CIGS, solar cells made from copper, indium, gallium, and selenium. In commercial products, the efficiency of these cells is about 12 percent in solar panels and 20 percent in labs. If CZTS could get to 15 percent efficiency, it could start to displace CIGS, says Mitzi.

“There’s no fundamental reason that we know of why we cannot get up to the same efficiencies with CZTS as we do with CIGS,” he says. “It’s one of the key goals for the field for the next year or two.”

Developing an alternative to CIGS is driven not so much by cost as availability of the raw material to make cells, Mitzi explained. Gallium and indium, which is used in flat-panel production, could become constrained as solar volumes increased. Much of the production of those elements is centered in China, he added.

Replacing those elements with more abundant copper and tin in CZTS cells has the potential to supply 500 gigawatts of solar power, many times more than CIGS, according to the paper. The researchers have sought to replace selenium with more abundant sulfur as well to address material availability.

Having CZTS match CIGS on efficiency within five years is a reasonable time horizon, Mitzi said. IBM is working solar companies in the research, including Japan-based Solar Frontier, which installed 577 megawatts worth of CIGS panels last year, according to GTM Research.

Solar manufacturers have developed thin-film solar panels because they promise to be cheaper. But the costs of the incumbent silicon solar processes have dropped precipitously over the past three years. (See, The Dog Days of Solar).

That has made thin-film’s cost advantage dwindle. But there are a number of research groups working with CZTS with an eye towards the long term. “We’re building an understanding of what we need to fix and address to get the higher performance,” says Mitzi.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.