Skip to Content

First Logic Gate Made From Undoped Silicon Nanowires

Physicists have found a way to make diodes, transistors and logic gates from pure silicon nanowires, without the need for dopants

Silicon nanowires are one of the great hopes for electronic devices of the future. Unlike features carved using photolithography, nanowires are easy to make on a nanometre scale. Electronic engineers hope to use them for everything from optoelectronics to biochemical sensing.

But there’s a problem because at the nanometre scale, the electronic properties of silicon can depend on the precise location of only a few dopants. That’s difficult to control and causes wide variation in device performance.

Consequently, nobody has been able to make reliable diodes, transistors or logic gates out of silicon nanowires.

Today, Massimo Mongillo et amis at the Universite Joseph Fourier, Grenoble, in France demonstrate a way out of this conundrum. These guys show how to fabricate diodes and transistors from undoped silicon nanowires and how how such devices can be wired together to make logic gates.

Making electronic devices from undoped silicon has always been tricky because of a phenomenon known as a Schottky barrier which occurs at the junction between a metal and a semiconductor. The electrons in the metal tend to push away the electrons in the semiconductor allowing current to flow in one direction but not the other.

That sounds useful and indeed it is in certain circumstances when it can be used as a diode. The problem occurs when rectification is not required and the junction must work in both directions. The Schottky barrier prevents this.

Mongillo  and co have got around this problem by carefully coating the nanowire with metal silicides at the junction with a metal contact which prevents the formation of unwanted  Schottky barriers.

As a result, they’ve created a device that they operate as a bipolar transistor, a Schottky diode and a p-n diode. The gain on their transistor is significantly more than 1 meaning that the output from one can be used as the input of another without additional signal restoration. Finally they link a couple of these devices together with external leads to create a NAND logic gate.

They point out that it ought to be possible to make a logic gate from a single nanowire using a different arrangement of contacts, although it is not clear how scalable this approach would be.

Impressive nevertheless. 

Ref: arxiv.org/abs/1208.1465: Multifunctional Devices and Logic Gates With Undoped Silicon Nanowires

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

thermal image of young woman wearing mask
thermal image of young woman wearing mask

The covid tech that is intimately tied to China’s surveillance state

Heat-sensing cameras and face recognition systems may help fight covid-19—but they also make us complicit in the high-tech oppression of Uyghurs.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.