Skip to Content

How Malaria Hijacks Your Immune System

The way the disease tricks the body’s defenses could help researchers develop better treatments.

Research published last week in PNAS shows that malaria succeeds thanks to a surprising trick. It creates a signaling molecule called a cytokine that disrupts the normal immune system response. This insight could be crucial to developing a cure, and it explains why it often takes a second infection to overwhelm the immune system.

A healthy immune system produces both short-lived and long-lived immune cells. The latter, called memory T cells, sustain an attack after the initial immune response and protect a person when reinfection occurs.

A team lead by researchers at Yale University found that the parasite responsible for malaria creates a signaling molecule that converts long-term memory T cells into short-term immune cells, thereby tipping the balance in favor of the parasite.

The parasite, called plasmodium, is transmitted from one person to another by mosquitoes and lives in the liver before multiplying and circulating in the bloodstream. Malaria infects at least 150 million people per year and kills over half a million people, according to the WHO, and the CDC estimates that half the world’s population is susceptible to the disease.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.