Skip to Content

How To Steer Sound Using Light

The ability to create phonons and then steer them using laser beams could lead to a new generation of applications, say physicists

Zap an optical fibre with a couple of laser beams and the resulting interference pattern causes an interesting effect–it squeezes the material, an effect known as electrostriction. This creates a compression wave called a phonon, a packet of sound, which travels along the fibre.

Not to be outdone, phonons also influence light because they change the refractive index of the material. This bends light and alters its frequency, an effect known as Brillouin scattering. 

After that, things get complicated. This mechanism sets in train a complex set of feedback effects in which photons generate phonons which influence the photons and so on.

The problem is understanding what’s going on. The ability to influence sound with light, and vice versa, could have interesting applications. But without an accurate model of this phenomenon, it’s hard to exploit. 

That looks set to change. Until now, physicists have sought to understand the phenomenon by assuming the phonons have a particular form and working out how this influences the incident light. In other words, they ignore feedback effects. 

Today, Jean-Charles Beugnot and Vincent Laude at Université de Franche-Comté in Besançon, France, take a more detailed at look the problem.

For the first time, these guys simulate how light generates phonons inside an optical fibre and how the phonons then interact with the light that generated them. They then test their ideas by measuring the way phonons scatter light in two types of fibre.

Their conclusion has interesting implications. They say that the light ends up guiding the phonons that it creates. In other words, it’s possible to create and then steer sound using light. “The phonon wavepacket generated via [electrostriction] is naturally guided by the light that gave it birth,” say Beugnot and Laude.

These guys aren’t very forthcoming with potential applications but it doesn’t take much imagination to speculate. Engineers already use light to reduce vibrations in mirrors, cooling them close to absolute zero. 

Beyond this,the most exciting application is in information processing. In this field, there is  growing interest in controlling phonons because they are essentially noise generated by heat. 

Controlling phonons would allow them to be steered away from sensitive areas. More ambitious still is the possibility of computing with phonons, with various groups around the world working on phonon diodes and transistors, the building blocks of logic gates.  

Progress so far is tentative but that could soon change. Other suggestions in the comments section please.

Ref: arxiv.org/abs/1207.2998: Electrostriction And Guidance Of Sound By Light In Optical Fbers

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.