Skip to Content

Lithium-Ion Battery

Inside the power source for portable electronics and electric vehicles.
June 19, 2012

Lithium-ion batteries, because they’re lightweight and compact, have enabled smart phones to get slimmer and electric vehicles more practical. Like all batteries, they work by means of chemical reactions that send electrons and ions from one electrode to another. Lithium-ion batteries, like the e-book battery shown here, require safety measures such as a fuse to prevent them from catching fire. Battery configurations vary, but generally the electrodes must be thin enough to allow lithium ions to move readily in and out of them. Electrode materials are deposited on foil that collects electrons and conveys them out of the battery. The electrodes don’t store much energy by area, so long strips of them are folded or rolled up to boost the battery’s capacity.

A typical e-book battery (above left) contains a copper foil coated with black graphite, the negative electrode material (middle). Peeling back more layers reveals the dark-gray positive electrode and the white electrolyte-soaked separator material (far right), which provides a path for lithium ions to travel between the electrodes but blocks electrons.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.