Skip to Content

How to Make a Broken Heart Mend Itself

A few small molecules that control gene expression can repair the scar tissue in a mouse’s damaged heart. The technique could translate into human therapy for heart attack patients and others.

Researchers from Duke University Medical Center used molecular control switches known as microRNAs (miRNAs) to induce cells in scar tissue to change roles and turn into myocytes, the heart muscle cells that beat. The first miRNA was found in 1993, but it took nearly another decade for scientists to recognize these short RNA molecules (comprising roughly 22 bases) as a unique class of genome regulators. Now biologists have shown that they regulate many cellular processes and can play a role in many diseases, including cancer and heart disease.

By injecting a virus carrying four different miRNAs into a mouse’s damaged heart, the Duke researchers were able to show that scarred heart tissue can regenerate into healthier muscle tissue. Each miRNA turned a different set of genes on or off to orchestrate the cells’ role change. In theory, similar miRNAs could be given to patients after a heart attack so that their cardiac muscle regenerates, thereby reducing the risk of future heart failure.

Other techniques, like induced pluripotent stem (iPS) cell technology, can also reprogram heart and other adult cells. With iPS cells, for instance, an adult cell such as a skin cell is “deprogrammed” into a pluripotent state before being reprogrammed to become, say, a cardiac muscle cell. However, the miRNA method may be simpler and more direct.

“If everything comes to fruition, I think we will see this as a therapy in the next decade,” said author Victor Dzau of Duke University Medical Center in a release.

Keep Reading

Most Popular

AV2.0 autonomous vehicles adapt to unknown road conditions concept
AV2.0 autonomous vehicles adapt to unknown road conditions concept

The big new idea for making self-driving cars that can go anywhere

The mainstream approach to driverless cars is slow and difficult. These startups think going all-in on AI will get there faster.

biomass with Charm mobile unit in background
biomass with Charm mobile unit in background

Inside Charm Industrial’s big bet on corn stalks for carbon removal

The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.