Skip to Content

Scientists Identify 10 Breast Cancer Sub-types with DNA analysis

Classifying cancers should help doctors better understand a patient’s response to therapies and prioritize drug design.

An international team of researchers has used a combination of genomic and gene expression analyses to identify 10 subtypes of breast cancer, each of which is typified by certain genetic aberrations. The classification of cancers can help researchers and doctors better understand patients’ responses to different therapeutics as well as prioritize drug design efforts for the most deadly of molecular disruptions.

The largely Canadian and UK team studied nearly 2000 breast tumor specimens from patients whose medical conditions were tracked for as many as 20 years after the specimens were taken. The researchers analyzed the genome sequences and gene expression levels of the tumors using DNA hybridization technology to examine changes in chromosomal architecture known as “copy number aberrations.” Breast cancer exhibits many of these structural changes–abnormal repetitions of chunks of chromosomes that can greatly alter the molecular landscape of a cell. 

The researchers also identified molecular changes within some of the subtypes that could one day help doctors decide how to best treat an individual’s particular tumor type. Some clinics are already using DNA analysis to “personalize” cancer treatments and studies like this can focus doctors and drug companies on the most effective molecular targets for treatment or R&D.

The team is currently sequencing the genomes of some of the specimens, says Samuel Aparicio, a physician and cancer geneticist the British Columbia Cancer Research Centre in Vancouver. “We need the full mutational framework for breast cancers,” he says, referring to the more complete picture that whole-genome sequencing will provide. What the team learned in this study could help “shortcut some of the framework building by directing our attention to specific groups,” he says.

Keep Reading

Most Popular

Conceptual illustration of a therapy session
Conceptual illustration of a therapy session

The therapists using AI to make therapy better

Researchers are learning more about how therapy works by examining the language therapists use with clients. It could lead to more people getting better, and staying better.

street in Kabul at night
street in Kabul at night

Can Afghanistan’s underground “sneakernet” survive the Taliban?

A once-thriving network of merchants selling digital content to people without internet connections is struggling under Taliban rule.

Conceptual illustration showing a file folder with the China flag and various papers flying out of it
Conceptual illustration showing a file folder with the China flag and various papers flying out of it

The US crackdown on Chinese economic espionage is a mess. We have the data to show it.

The US government’s China Initiative sought to protect national security. In the most comprehensive analysis of cases to date, MIT Technology Review reveals how far it has strayed from its goals.

IBM engineers at Ames Research Center
IBM engineers at Ames Research Center

Where computing might go next

The future of computing depends in part on how we reckon with its past.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.