Skip to Content

Amoeboid Robot Navigates Without a Brain

A Japanese researcher draws inspiration from slime mold cognition

A new blob-like robot described in the journal Advanced Robotics uses springs, feet, “protoplasm” and a distributed nervous system to move in a manner inspired by the slime mold Physarum polycepharum. Watch it ooze across a flat surface, The Blob style:

Skip to 1:00 if you just want to be creeped out by its life-like quivering. (And if anyone can explain why, aside from wanting to kill its creepiness, the researcher stabs it with a pen-knife at 1:40, let me know in the comments.)

Researcher Takuya Umedachi of Hiroshima University has been perfecting his blob-bot for years, starting with early prototypes that used springs but lacked an air-filled bladder.

This model didn’t work nearly as well, demonstrating, I guess, the need for a fluid or air-filled sack when you’re going to project your soft-bodied self in a new direction. (Hydraulic pressure is, after all, how our tongues work.)

Umedachi modeled his latest version on the “true” slime mold, which has been shown to achieve a “human-like” decision-making capacity through properties emerging from the interactions of its individual spores. Slime molds appear to have general computational abilities, and you’ve probably heard that they can solve mazes. Here’s what they look like in the wild.

Yellow slime mold (detail) by frankenstoen
Yellow slime mold by frankenstoen

Soft-bodied robots can do things their rigid, insectoid brethren can’t, like worm their way into tight spots and bounce back in the face of physical insult.

Umedachi’s goal isn’t simply to create a new kind of locomotion, however. He’s exploring the way in which robots that lack a centralized command center – i.e. a brain – can accomplish things anyway. Slime molds are a perfect model for this sort of thing, because they don’t even have the primitive neural nets that characterize the coordinated swimming and feeding actions in jellyfish.

From the abstract:

A fully decentralized control using coupled oscillators with a completely local sensory feedback mechanism is realized by exploiting the global physical interaction between the body parts stemming from the fluid circuit. The experimental results show that this robot exhibits adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on the design scheme for autonomous decentralized control systems.

Simulations indicate that the robot should be highly adaptable to deformation – i.e., squeezing through tight spaces.

For a full account of the ways that Umedachi plans to reproduce the world’s most primitive form of cognition in robots, here’s a 2011 talk on the subject by the professor himself.

 Follow @Mims or get in touch

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.