Skip to Content

A Leap Forward for Plastic Solar Cells

An inexpensive, polymer-based device breaks a record, reaching 10.6 percent efficiency.
February 22, 2012

A record-breaking polymer solar cell made by researchers at the University of California, Los Angeles, converts 10.6 percent of the energy in sunlight into electricity. The performance of the cell surpasses the previous record, 8.6 percent, set in July of last year by the same group.

Polymer solar cells are flexible, lightweight, and potentially inexpensive, but their performance lags behind that of conventional cells made from inorganic materials such as silicon. The goal of the researchers, led by Yang Yang, professor of materials science and engineering at UCLA, is to make a polymer solar cell that can compete with thin-film silicon cells. Yang’s record-breaking cell, enabled by a new photovoltaic polymer developed by a Japanese company, Sumitomo Chemical, is a sign that researchers are getting better at making solar cells from these finicky materials.

The new plastic solar cell combines two layers that work with different bands of light—a polymer that works with visible light and one that works with infrared light. “The solar spectrum is very broad, from the near infrared through the infrared to the ultraviolet, and one single solar-cell component can’t do it all,” says Yang.

The best inorganic solar cells are also multilayer devices, but making multilayer organic solar cells has been difficult. Polymers can be printed from solution, like printing ink on paper, which is both a primary advantage of the technology and a liability, says Alan Heeger, who shared the Nobel Prize in 2000 for his co-discovery of conductive polymers. “There are no high temperatures involved, and manufacturing is simple,” he says. But figuring out the right solvents to print each layer in a cell without bleeding into the one below it is tricky. The more layers, the more complex the problem becomes. Matching the electrical properties of each layer is also a challenge, as has been connecting them together.

Yang says he wants to make a polymer solar cell with an efficiency of 15 percent. He notes that efficiency numbers typically drop by about a third when solar cells are taken out of the lab and sold in working modules. A polymer solar cell that tests at 15 percent efficiency in the lab is likely to make a module with 10 percent efficiency, which Yang believes is good enough to compete with thin-film silicon solar.

Keep Reading

Most Popular

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

Professor Gang Chen of MIT
Professor Gang Chen of MIT

All charges against China Initiative defendant Gang Chen have been dismissed

MIT professor Gang Chen was one of the most prominent scientists charged under the China Initiative, a Justice Department effort meant to counter economic espionage and national security threats.

mouse engineered to grow human hair
mouse engineered to grow human hair

Going bald? Lab-grown hair cells could be on the way

These biotech companies are reprogramming cells to treat baldness, but it’s still early days.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.