Skip to Content

Sunlight Absorber

A nanoscale pattern could lead to more efficient solar cells
February 21, 2012

Source: “Broadband 
Polarization-Independent Resonant Light Absorption Using Ultrathin Plasmonic Superabsorbers”
Harry Atwater et al.
Nature
Communications 2: 517

Results: Thin films of silver ordinarily absorb only 5 percent of visible light. By applying a pattern of nanoscale shapes to such a surface, researchers increased absorption to 70 percent. The patterned film absorbs light from the entire visible spectrum and from almost any angle.

Why it matters: The advance could lead to solar cells that are far thinner and cheaper than conventional ones, because less semiconductor material would be needed to absorb sunlight. Researchers have known that nanoscale patterns can greatly enhance light absorption by gathering light waves the way antennas gather radio waves. But these patterns typically absorb only light of certain wavelengths, allowing most of the solar spectrum to escape. That makes them impractical for use in solar cells. The researchers have demonstrated that their patterns can be used to absorb a wide range of wavelengths, opening the door for their use in photovoltaic devices.

Methods: The researchers used lithography to carve patterns of tiny wedge shapes placed end to end. The narrow end of the wedges can absorb short wavelengths at the blue end of the spectrum, and the wider end absorbs longer-wavelength red light.

Next Steps: The researchers are working to apply the nanoscale design to materials used in solar cells. In recent, unpublished experiments, they showed that the patterns can allow thin films of silicon to absorb as much light as unpatterned silicon films 25 times as thick.

Keep Reading

Most Popular

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

section of Rima Sharp captured by the LRO
section of Rima Sharp captured by the LRO

The moon didn’t die as early as we thought

Samples from China’s lunar lander could change everything we know about the moon’s volcanic record.

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.