Skip to Content

LEDs Could Lead You Right to a Discount

A startup believes combining LED technology and smart-phone apps will offer precise indoor location data.
February 13, 2012

When you go to the grocery store, chances are you find yourself hunting for at least a couple of items on your list. Wouldn’t it be easier if your smart phone could just give you turn-by-turn directions to that elusive can of tomato paste or bunch of cilantro, and maybe even offer you a discount on yogurt, too?

Bright light: A prototype array of ByteLight’s LED bulbs is shown here in testing. The lights could eventually work with mobile apps to guide people through large indoor spaces like museums and stores.

That’s the idea behind ByteLight, a Cambridge, Massachusetts-based startup founded by Dan Ryan and Aaron Ganick. ByteLight aims to use LED bulbs—which will fit into standard bulb sockets—as indoor positioning tools for apps that help people navigate places such as museums, hospitals, and stores, and offer deals targeted to a person’s location.

Accurate indoor navigation is currently lacking. While GPS is good for finding your way outdoors, it doesn’t work as well inside. And technologies being used for indoor positioning, such as Wi-Fi, aren’t accurate enough, Ryan and Ganick say.

Ryan and Ganick feel confident they’re in the right space at the right time: there’s not only been a boom in location-based services, but also in smart-phone apps such as Foursquare or Shopkick that use these services. Meanwhile, LEDs are increasingly popular as replacements for traditional lightbulbs (due to their energy efficiency and long life span).

ByteLight grew out of the National Science Foundation-funded Smart Lighting Engineering Research Center at Boston University, which Ganick and Ryan, both 24, took part in as electrical engineering undergrads.

Initially, ByteLight focused on using LEDs to provide high-speed data communications—a technology referred to as Li-Fi. But Ryan and Ganick felt their technology was better suited to helping people find their way around large indoor spaces.

Here’s how it might work: you’re in a department store that has replaced a number of its traditional lightbulbs with ByteLights. The lights, flickering faster than the eye can see, would emit a signal to passing smart phones. Your phone would read the signal through its camera, which would direct the smart phone to pull up a deal offering a discount on a shirt on a nearby rack.

While Wi-Fi can only accurately determine your position indoors to within about five to 10 meters, Ryan and Ganick say, ByteLight’s technology cuts this down to less than a meter—close enough for you to easily figure out which shirt the deal is referring to.

ByteLight is working on a functioning prototype, and hopes to have the first products available within a year. Ryan and Ganick say a number of developers are working on smart-phone apps that would include the technology, which, they feel, could also work as an additional (or smarter) location-finding feature within existing apps.

The company is talking to retailers about installing its equipment in stores, too. Ryan and Ganick think businesses will warm to ByteLight because installation mainly requires buying and screwing in their lightbulbs. Once a business installs the lights, they’ll need to use a ByteLight mobile app to determine which light corresponds to which spot in their building, Ganick says. An app developer could then use that data to tag deals to different lights.

And while LED bulbs are more costly than standard lightbulbs, they’ve been falling in price. ByteLight says its bulbs will be only “marginally” more expensive than existing LEDs.

Jeffrey Grau, an analyst with digital marketing company eMarketer, believes ByteLight may be on to something. If the customers are already inside a store, showing them an exclusive offer makes it more likely they’ll buy something.

But will shoppers find ByteLight’s targeting creepy? Ryan and Ganick don’t think so. They say an app on your smart phone would be “listening” for nearby ByteLights, not the other way around. So users can control their own experience. And the LED bulbs’ positioning capabilities could help people inside a large building solve the common problem of figuring out where they are. “We want people to think about lightbulbs in an entirely new way,” Ganick says.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.