Skip to Content
Uncategorized

How Neutrons Might Escape Into Another Universe

The leap from our universe to another is theoretically possible, say physicists. And the technology to test the idea is available today

The idea that our universe is embedded in a broader multidimensional space has captured the imagination of scientists and the general population alike. 

This notion is not entirely science fiction. According to some theories, our cosmos may exist in parallel with other universes in other sets of dimensions. Cosmologists call these universes braneworlds. And among that many prospects that this raises is the idea that things from our Universe might somehow end up in another.

A couple of years ago, Michael Sarrazin at the University of Namur in Belgium and a few others showed how matter might make the leap in the presence of large magnetic potentials. That provided a theoretical basis for real matter swapping. 

Today, Sarrazin and a few pals say that our galaxy might produce a magnetic potential large enough to make this happen for real. If so, we ought to be able to observe matter leaping back and forth between universes in the lab. In fact, such observations might already have been made in certain experiments.

The experiments in question involve trapping ultracold neutrons in bottles at places like the Institut Laue Langevin in Grenoble, France, and the Saint Petersburg Institute of Nuclear Physics. Ultracold neutrons move so slowly that it is possible to trap them using ‘bottles’ made of magnetic fields, ordinary matter and even gravity.

One reason to do this is  to measure how quickly the neutrons decay by beta emission. So physicists measure the rate at which the neutrons hit the bottle walls and how quickly this drops.   

There are two processes at work here: the rate of neutron decay and the rate at which neutrons escape from the bottle. So in the case of an ideal bottle, the rate of decay should be equal to the beta decay rate. But the bottles are not ideal so the rate of decay is always faster. 

That leaves open the possibility that there might be a third process at work: that some of the extra decay might be the result of neutrons jumping from our universe to another. 

So Sarrazin and co have used the measured decay rates to place an upper limit on how often this can happen. 

Their conclusion is that the probability of a neutron jumping ship is smaller than about one in a million.

That doesn’t really say anything about whether matter swapping actually takes place. Only that if it does, it doesn’t happen very often.  

However, Sarrazzin and co also say it should be straightforward to take better data that places stricter limits.

According to their theoretical work, a change in the gravitational potential should also influence the rate of matter swapping. So one idea is to carry out a neutron trapping experiment that lasts for a year or more, allowing the Earth to complete at least one orbit of the Sun.

In that time, the gravitational potential changes in a way that should influence the rate of matter swapping. Indeed, there ought to be an annual cycle. “If one can detect such a modulation it would be a strong indication that matter swapping really occurs,” they say.

That would be one of the biggest and most controversial discoveries in modern physics and one that is possible with technologies available today. 

Anyone got an old neutron bottle lying around and a bit of spare time on their hands?

Ref: arxiv.org/abs/1201.3949: Experimental Limits On Neutron Disappearance Into Another Braneworld

Keep Reading

Most Popular

conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other
conceptual illustration of a heart with an arrow going in on one side and a cursor coming out on the other

Forget dating apps: Here’s how the net’s newest matchmakers help you find love

Fed up with apps, people looking for romance are finding inspiration on Twitter, TikTok—and even email newsletters.

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.