Skip to Content

Nanotube Motor

Artificial muscles could power tiny actuators and microfluidic mixers
December 20, 2011

Source: “Torsional Carbon Nanotube Artificial Muscles”
Ray Baughman et al.
Science
334: 494–497

Results: Researchers at the University of Texas at ­Dallas made nanotube yarn that twists in response to electricity, enabling it to act as a motor. For a given length, it twists 1,000 times more than other materials designed for use as tiny motors, such as shape-­memory alloys that change shape in response to heat or another stimulus. The fastest of the nanotube motors spins at 600 revolutions per minute and can generate as much twisting force as a conventional motor. Researchers demonstrated this ability by using it to mix fluids with a paddle.

Why it matters: Making useful motors for very small applications has been difficult because decreasing the size of conventional motors greatly decreases the amount of twisting force they can exert relative to their weight. Even at this scale—just a fraction of a hair’s width—the nanotube yarn can exert as much force relative to its weight as a large motor. It could be useful for moving fluids around in microfluidic devices.

Methods: The researchers used previously ­developed methods to twist carbon nanotubes together into a thin yarn. They dipped one half of the yarn, along with an electrode, in an electrolyte. They also attached a paddle to the middle of the piece of yarn and anchored both ends to prevent them from rotating. When they applied electricity, ions from the electrolyte were attracted to electrons in the nanotubes. As the ions moved into the yarn, its volume increased, causing it to partially untwist; this, in turn, made the paddle move. When the power was cut, the half of the yarn that wasn’t immersed in the electrolyte acted as a spring that returned the paddle to its original position.

Next Steps: The researchers are now building microfluidic circuits that use the motors as pumps and mixers. They are also starting to make robots the size of bacteria that are propelled by the nanotube yarns.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.