Skip to Content

Bio-Assembling in 3-D with Magnetic Levitation

A new system grows tissue in 3-D without protein matrixes
December 15, 2011

Growing tissues on two-dimensional petri dishes is so last century, say proponents of 3-D tissue engineering, who argue convincingly that the body isn’t flat, and the experimental platforms and treatments of the future shouldn’t be, either. Now a new technology, pioneered by Houston-based n3D Biosciences, promises to float cells in a 3-D matrix made of nothing but magnetism.

The secret ingredient is a proprietary mix of nanoparticles the company calls Nanoshuttle. The addition of these particles to a dish of living cells allows them to move in response to magnetic fields that can be varied in three dimensions and across time.

According to an abstract on the work from the just-concluded meeting of the Tissue Engineering International & Regenerative Medicine Society, they’ve managed to tune this effect until it can create a “BioAssembler” that “leads to rapid formation of levitated 3-D cell cultures.”

The system is an alternative approach to bioprinting, in which layers of cells are laid down by specially modified injket printers in a process analogous to traditional 3-D printing.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.