Skip to Content
MIT News magazine

Seeing the Forest from a Tree

New model predicts maximum tree heights
October 25, 2011

Knowing how tall trees can grow in any given region can help ecologists determine the potential density of a forest, the size of its tree canopy, the amount of carbon it stores, and the health of the overall ecosystem.

Now a team led by an MIT researcher has built a simple model to predict the maximum tree height in different environments across the United States. The model, published in PLoS One, uses basic meteorological data—such as average annual temperature, precipitation, humidity, and sunlight—to compute how tall a tree is likely to grow under those conditions.

Lead author Chris Kempes, a PhD student in the Department of Earth, Atmospheric, and Planetary Sciences, describes a tree as a vascular “highway system” that pumps water and nutrients from the soil to the leaves, which in turn release sugary by-products of photosynthesis that are transported down to the roots. The pumping capacity, or fluid flow rate, is a bit of a balancing act: the rate of metabolism depends in part on environmental factors. 

The team drew up an “idealized tree”—an average model of all tree species in the United States—and developed equations to represent the relationships between fluid flow rate, tree size, and meteorological factors such as average temperature and sunlight.

Then they put the model to work, predicting the height of the tallest trees across the country using local meteorological data. The predictions from the model closely matched actual measurements taken by the U.S. Forest Service, with two exceptions: the arid Southwest and parts of New England that have been heavily logged.

The group used the same model to predict what would happen given global temperature changes. With an increase of 2 °C across the country, the average height of the tallest trees would shrink by 11 percent. Conversely, a dip of 2 °C would spur trees to sprout up by 13 percent.

With the help of the model, ­Kempes plans to use data on maximum tree height to estimate the whole distribution of tree heights and the variety of species that a given environment can support.

“If you take a really small juniper tree that lives in the desert and you put it in the Northwest, it’ll grow to perhaps four times as tall,” Kempes says. “But it won’t grow to be the height of a redwood. And this is what all of ecology is interested in: How much of your existence is determined by the environment versus your genetics? Now we can concretely say this is the environmental side of things, and now we want to go after the species.”

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

thermal image of young woman wearing mask
thermal image of young woman wearing mask

The covid tech that is intimately tied to China’s surveillance state

Heat-sensing cameras and face recognition systems may help fight covid-19—but they also make us complicit in the high-tech oppression of Uyghurs.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.