Skip to Content
MIT News magazine

Seeing the Forest from a Tree

New model predicts maximum tree heights
October 25, 2011

Knowing how tall trees can grow in any given region can help ecologists determine the potential density of a forest, the size of its tree canopy, the amount of carbon it stores, and the health of the overall ecosystem.

Now a team led by an MIT researcher has built a simple model to predict the maximum tree height in different environments across the United States. The model, published in PLoS One, uses basic meteorological data—such as average annual temperature, precipitation, humidity, and sunlight—to compute how tall a tree is likely to grow under those conditions.

Lead author Chris Kempes, a PhD student in the Department of Earth, Atmospheric, and Planetary Sciences, describes a tree as a vascular “highway system” that pumps water and nutrients from the soil to the leaves, which in turn release sugary by-products of photosynthesis that are transported down to the roots. The pumping capacity, or fluid flow rate, is a bit of a balancing act: the rate of metabolism depends in part on environmental factors. 

The team drew up an “idealized tree”—an average model of all tree species in the United States—and developed equations to represent the relationships between fluid flow rate, tree size, and meteorological factors such as average temperature and sunlight.

Then they put the model to work, predicting the height of the tallest trees across the country using local meteorological data. The predictions from the model closely matched actual measurements taken by the U.S. Forest Service, with two exceptions: the arid Southwest and parts of New England that have been heavily logged.

The group used the same model to predict what would happen given global temperature changes. With an increase of 2 °C across the country, the average height of the tallest trees would shrink by 11 percent. Conversely, a dip of 2 °C would spur trees to sprout up by 13 percent.

With the help of the model, ­Kempes plans to use data on maximum tree height to estimate the whole distribution of tree heights and the variety of species that a given environment can support.

“If you take a really small juniper tree that lives in the desert and you put it in the Northwest, it’ll grow to perhaps four times as tall,” Kempes says. “But it won’t grow to be the height of a redwood. And this is what all of ecology is interested in: How much of your existence is determined by the environment versus your genetics? Now we can concretely say this is the environmental side of things, and now we want to go after the species.”

Keep Reading

Most Popular

Conceptual illustration showing a file folder with the China flag and various papers flying out of it
Conceptual illustration showing a file folder with the China flag and various papers flying out of it

The US crackdown on Chinese economic espionage is a mess. We have the data to show it.

The US government’s China Initiative sought to protect national security. In the most comprehensive analysis of cases to date, MIT Technology Review reveals how far it has strayed from its goals.

Image of workers inspecting solar panels at a renewable energy plant
Image of workers inspecting solar panels at a renewable energy plant

Renewables are set to soar

The world will likely witness a wind and solar boom over the next five years, as costs decline and nations raise their climate ambitions.

light and shadow on floor
light and shadow on floor

How Facebook and Google fund global misinformation

The tech giants are paying millions of dollars to the operators of clickbait pages, bankrolling the deterioration of information ecosystems around the world.

travelers walk through Ronald Reagan Washington National Airport
travelers walk through Ronald Reagan Washington National Airport

We won’t know how bad omicron is for another month

Gene sequencing gave an early alert about the latest covid variant. But we'll only know if omicron is a problem by watching it spread.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.