
In 2010, an international team of researchers proved that no matter how scrambled a Rubik’s cube got, it would require no more than 20 moves to solve it. Their proof, however, relied on the equivalent of 35 years’ worth of number crunching on a good modern computer.
For cubes bigger than the standard Rubik’s cube, adequately canvassing starting positions may well be beyond the computational capacity of all the computers in the world. But in September, Erik Demaine (right), an associate professor of computer science and engineering, led a team including his father, CSAIL visiting professor Martin Demaine (left), that demonstrated the mathematical relationship between the number of squares in a cube and the number of moves in the shortest solution to its most scrambled state.
The standard way to solve a Rubik’s cube is to find a square that’s out of position and move it into place while leaving the rest of the cube as little changed as possible. That yields a worst-case solution whose number of moves is proportional to N2, where N is the number of squares per row. But the team saw that under some circumstances, a single sequence of twists could move multiple squares into place.
Describing those circumstances mathematically was no easy task. “In the first hour, we saw that it had to be at least N2/log N,” Erik Demaine says. “But then it was many months before we could prove that N2/log N was enough moves.”
Keep Reading
Most Popular

A quick guide to the most important AI law you’ve never heard of
The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.
If they ever hit our roads for real, other drivers need to know exactly what they are.

This is the first image of the black hole at the center of our galaxy
The stunning image was made possible by linking eight existing radio observatories across the globe.

The gene-edited pig heart given to a dying patient was infected with a pig virus
The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.