Skip to Content
Uncategorized

Neutrons Become Cubes Inside Neutron Stars

Intense pressure can force neutrons into cubes rather than spheres, say physicists
Inside atomic nuclei, protons and neutrons fill space with a packing density of 0.74, meaning that only 26 percent of the volume of the nucleus in is empty.
That’s pretty efficient packing. Neutrons achieve a similar density inside neutron stars, where the force holding neutrons together is the only thing that prevents gravity from crushing the star into a black hole.
Today, Felipe Llanes-Estrada at the Technical University of Munich in Germany and Gaspar Moreno Navarro at Complutense University in Madrid, Spain, say neutrons can do even better.
These guys have calculated that under intense pressure, neutrons can switch from a spherical symmetry to a cubic one. And when that happens, neutrons pack like cubes into crystals with a packing density that approaches 100%.
Anyone wondering where such a form of matter might exist would naturally think if the centre of neutron stars. But there’s a problem.
On the one hand, most neutron stars have a mass about 1.4 times that of the Sun, which is too small to generate the required pressures for cubic neutrons. On the other, stars much bigger than two solar masses collapse to form black holes.
That doesn’t leave much of a mass range in which cubic neutrons can form.
As luck would have it, however, last year astronomers discovered in the constellation of Scorpius the most massive neutron star ever seen. This object, called PSR J1614-2230, has a mass 1.97 times that of the Sun.
That’s about as large as theory allows (in fact its mere existence rules out various theories about the behaviour of mass at high densities). But PSR J1614-2230 is massive enough to allow the existence of cubic neutrons.
Astrophysicists will be rubbing their hands at the prospect. The change from spherical to cubic neutrons should have a big influence on the behaviour a neutron star. It would change the star’s density, it’s stiffness and its rate of rotation, among other things.
So astronomers will be getting their lens cloths out and polishing furiously in the hope of observing this entirely new form of matter in the distant reaches of the galaxy.
Ref: arxiv.org/abs/1108.1859: Cubic Neutrons

Keep Reading

Most Popular

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Uber Autonomous Vehicles parked in a lot
Uber Autonomous Vehicles parked in a lot

It will soon be easy for self-driving cars to hide in plain sight. We shouldn’t let them.

If they ever hit our roads for real, other drivers need to know exactly what they are.

crypto winter concept
crypto winter concept

Crypto is weathering a bitter storm. Some still hold on for dear life.

When a cryptocurrency’s value is theoretical, what happens if people quit believing?

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.