Skip to Content

Making Cells on an Assembly Line

A chip-based method to churn out cell membranes could aid the development of novel proteins and synthetic cells.
March 23, 2011

Researchers have developed a way to create uniformly sized cell membranes, small cellular packages that can be used like tiny terrariums to study the inner workings of the cell and even create new molecules.

Islands in the stream: Water droplets suspended in oil travel down a channel in a microfluidic chip. A stream of water flows alongside, forming an oil-water interface.

Sandro Matosevic and Brian Paegel of the Scripps Research Institute in Jupiter, Florida, have developed a chip-based method that creates uniformly sized vesicles in assembly-line fashion. Sized between 20 and 70 micrometers in diameter, the vesicles are large enough to be loaded with DNA and the biochemical machinery to act as synthetic cells. The synthetic packaging will help researchers study the proteins in cell membranes, which play important roles as gatekeepers of the cell. Many drugs, for example, act on these membrane proteins or otherwise use them to get inside cells in order to do their job.

Paegel and his colleagues want to use the system to create membrane proteins with new and useful functions. “From an evolutionary standpoint, they’re just this really juicy class of molecules to target for new functions, because they do all this interesting chemistry,” Paegel says. These molecules have traditionally been difficult to work with because they require a lipid bilayer—the double layer of fatty molecules that makes up the cell membrane—in order to function.  A synthetic cell membrane, like the type created in the study, allows scientists to house a single gene as well as the other biochemical components for synthesizing that membrane protein.

The chip-based approach builds on previous research in which scientists created cell-like membranes in bulk in a centrifuge.  In the Scripps team’s microfluidic device, water droplets suspended in oil travel down one branch of a Y-shaped channel. Water flows down the other branch, creating an oil-water interface when the two liquids meet. The device then pushes the droplets through the oil-water interface, where they get coated in another layer of lipids to form the bilayer membrane. The researchers published their work online last month in the Journal of the American Chemical Society.

“The new aspect is the ability to make these giant, cellular-sized liposomal vesicles that are completely uniform in their size and their content. No one’s been able to demonstrate that yet in a robust system,” says Wyatt Vreeland, a research chemical engineer in the biochemical sciences division at the National Institute of Standards and Technology in Gaithersburg, Maryland. “This lets us start to look at reconstituting cellular systems in vitro in a controlled way in order to investigate how different components within a cell work.”

Keep Reading

Most Popular

computation concept
computation concept

How AI is reinventing what computers are

Three key ways artificial intelligence is changing what it means to compute.

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

seeing is believing concept
seeing is believing concept

Our brains exist in a state of “controlled hallucination”

Three new books lay bare the weirdness of how our brains process the world around us.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.