Skip to Content

Physicists Build Single Atom Memory For Quantum Information

A single atom of rubidium sits at the heart of an exotic new quantum memory device.

One of the building blocks for the next generation of quantum computing and communications systems is a way of storing and regenerating photonic qubits. These are generally encoded in the polarisation of photons.

To date, physicists have done this by transferring the qubit from a photon to an ensemble of quantum particles such as a crystal lattice or a small cloud of atoms.

Today, Holger Specht and pals at the Max Planck Institute for Quantum Optics in Garching, Germany, have gone one better. They’ve found a way to store the qubit from a polarised photon in a single atom of rubidium and then release it again later.

The trick here is first to find an atom with the suitable two-level state that will absorb photons in the right way and second, to find a way to force the photon to give up its qubit to the atom.

It turns out that rubidium has the just right energy levels. Specht and co force the atom and photon to interact by trapping them in a high quality mirrored cavity in which the photon can enter but not easily escape. It then rebounds inside until it gives up its goods to the atom.

To accept the qubit, the atom first has to be placed in the right state by a weak laser beam. A second laser beam later forces the atom to spit out the qubit in the form of an identical polarised photon.

The result is a single atom memory that can read, store and write quantum information.

That’s a useful piece of kit. For example, such a device could form the basis of a quantum repeater, an enabling technology for a quantum internet that could be vastly more capable than the one we have today.

And although the device can store qubits for only 180 microseconds and has an overall efficiency of 9 per cent, Specht and co say they know how to make significant improvements, “with the prospect of storage times exceeding several seconds”.

This is a crowded field with many groups working on similar devices. It’s not clear whether the German team has the edge over its competitors but they’re certainly in the running.

Ref: arxiv.org/abs/1103.1528: A Single-Atom Quantum Memory

You can now follow The Physics arXiv Blog on Twitter

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

The Biggest Questions: What is death?

New neuroscience is challenging our understanding of the dying process—bringing opportunities for the living.

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

How to fix the internet

If we want online discourse to improve, we need to move beyond the big platforms.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.