Skip to Content

Memristor Processor Solves Mazes

Physicists have designed a memristor processor that uses a massively parallel approach to solve mazes.

Memristors are the fourth fundamental building block of electronic circuits, after resistors, capacitors and inductors. They were famously predicted in the early 1970s but only discovered 30 years later at HP Labs in Palo Alto, California.

Memristors are resistors that “remember” the state they were in, which changes according to the current passing through them. They are expected to revolutionise the design and capabilities of electronic circuits and may even make possible brain-like architectures in silicon, since neurons behave like memristors.

Today, we see one of the first revolutionary circuits thanks to Yuriy Pershin at the University of South Carolina and Massimiliano Di Ventra at the University of California, San Diego, two pioneers in this field. Their design is a memristor processor that solves mazes and it is remarkably simple.

Mazes are a class of graphical puzzles in which, given an entrance point, one has to find the exit via an intricate succession of paths, with the majority leading to a dead end, and only one, or few, correctly “solving” the puzzle.

Pershin and Di Ventra begin by creating a kind of a universal maze in the form of a grid of memristors, in other words an array in which each node is connected to another by a memristor and a switch. This can be made to represent any regular maze by switching off certain connections within the array.

Solving this maze is then simple. Simply connect a voltage across the start and finish of the maze and wait. “The current flows only along those memristors that connect the entrance and exit points,” say Pershin and Di Ventra. This changes the state of those memristors allowing them to be easily identified. The chain of these memristors is then the solution.

That’s potentially much quicker than other maze solving strategies which effectively work in series. “The maze is solved in a massively parallel way, since all memristors in the network participate simultaneously in the calculation,” they say.

They’ve tested the idea with a memristor simulator, a computer program that reproduces the behaviour of real memristors, and say it works well. And implementing the device in silicon will become easier as more development work is done in this area.

Of course, it’s not just the memristors that are doing the calculating here. Their network structure and layout is crucial too. When a maze is created, the answer is already embedded in its structure, well before any computation begins. The only question is how easily it can be extracted. This new approach, in which the entire structure of maze takes part, is clearly powerful.

That makes Pershin and Di Ventra’s work part of a growing body of interest in the role that form and structure play in processing information. If you’re in any doubt the significance of this so-called morphological computing, think about how the human body walks or jumps.

There is increasing evidence that the brain has much less involvement with this kind of movement than anybody imagined. Instead, the shape, form and material properties of bones, ligaments and muscles largely control the detail of what happens. In effect, the brain outsources control to the morphology of the system.

This kind of memristive processing falls into a similar category. Expect to hear more about it.

Ref: arxiv.org/abs/1103.0021: Solving Mazes With Memristors: A Massively-Parallel Approach

You can now follow The Physics arXiv Blog on Twitter

Keep Reading

Most Popular

Rendering of Waterfront Toronto project
Rendering of Waterfront Toronto project

Toronto wants to kill the smart city forever

The city wants to get right what Sidewalk Labs got so wrong.

windows desktop with anime image from Wallpaper Engine
windows desktop with anime image from Wallpaper Engine

Chinese gamers are using a Steam wallpaper app to get porn past the censors

Wallpaper Engine has become a haven for ingenious Chinese users who use it to smuggle adult content as desktop wallpaper. But how long can it last?

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Linux hack concept
Linux hack concept

The US military wants to understand the most important software on Earth

Open-source code runs on every computer on the planet—and keeps America’s critical infrastructure going. DARPA is worried about how well it can be trusted

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.