Skip to Content

How To Turn A Laser Into A Tractor Beam

Physicists work out how to generate a backward pulling force from a forward propagating beam

A photon has a small momentum which it can impart to anything it hits, as Arthur Compton and Peter Lebedev discovered at the beginning of the last century. We now know that photons can be used to push anything from electrons to solar sails.

Today, Jun Chen from Fudan University in China and a few pals demonstrate the counterintuitive result that photons can pull things too. In other words, they’ve worked out how to generate a backward pulling force from a forward propagating beam.

Chen and buddies say this is possible when the system meets two conditions. First, it works only for beams in which the momentum in the direction of propagation is small, as is the case for beams that merely glance off an object. Second, the photons must simultaneously excite several multipoles within the particle, which scatter the beam.

If the scattering angle is just right, the total momentum in the direction of propagation can be negative, meaning the particle is pulled back towards the source and the light becomes a tractor beam.

This must not be confused with various “optical tweezer” type mechanisms in which particles trapped in a beam follow the intensity gradient of the light. In this case, the particles always reach some point of equilibrium where the intensity reaches a maximum.

Chen and co’s new force works when there is no gradient. Given the chance, their tractor beam will pull a particle all the way back to the source.

That’s a handy additional tool in the nanomanipulator’s box of tricks. “This may open up new avenues for optical micromanipulation, of which typical examples include transporting a particle backward over a long distance and particle sorting,” say Chen and co.

This is a theory paper so there’s one piece of the puzzle left to fit. All they have to do now is demonstrate that their tractor beam works.

Ref: arxiv.org/abs/1102.4905: Backward Pulling Force From A Forward Propagating Beam

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.