Skip to Content
MIT News magazine

Storing Sunlight

A thermochemical battery could hold and release energy as needed
February 22, 2011

The biggest problem with solar power has always been its intermittency: what do you do when the sun goes down? But an unconventional approach could offer the best way yet to store the sun’s heat and release it when it’s needed.

A thermochemical battery would capture solar energy by using sunlight to change the shape of certain molecules, which would then release the energy on demand when they snapped back to the original shape. One benefit of such a system is that heat-storing chemicals can remain stable for years. Solar-thermal systems, a conventional storage technology in which the sun’s energy is concentrated to heat water, molten salt, or other materials, gradually lose heat even with the most effective insulation available.

In 1996 researchers at Berkeley discovered that a chemical called fulvalene diruthenium can reliably and reversibly switch between two states. When it absorbs sunlight, they found, the molecule undergoes a structural transformation, assuming a higher-energy state where it can remain stable indefinitely. A catalyst can be used to return it to its original shape, releasing heat in the process. In principle, when fulvalene diruthenium releases its stored heat, it “can get as hot as 200 °C, plenty hot enough to heat your home, or even to run an engine to produce electricity,” says ­Jeffrey ­Grossman, an associate professor of power engineering. “You could put the fuel out in the sun, charge it up, then use the heat and place the same fuel back in the sun to recharge.”

But this compound includes ruthenium, a rare and expensive element. Moreover, no one understood how it worked, which hindered efforts to find a cheaper equivalent. Now Grossman and his MIT colleagues, in collaboration with the Berkeley researchers, have found out exactly how the molecule stores and releases energy, which should facilitate the search for similar but less expensive chemicals.

“It turns out there’s an intermediate step that plays a major role,” says Grossman: the molecule forms a semistable configuration partway between the two previously known states. “That was unexpected,” he says. The two-step process helps account for why the molecule is so stable and why the process is easily reversible. And now that the researchers know to look for a two-step process, it should be easier to find materials that duplicate fulvalene’s behavior.

The next step, Grossman says, is to use simulation, intuition, and databases of tens of millions of known molecules to look for such a substitute. He’s certain that as researchers come to “understand what makes this material tick,” they’ll find other materials that work the same way.

Keep Reading

Most Popular

VR is as good as psychedelics at helping people reach transcendence

On key metrics, a VR experience elicited a response indistinguishable from subjects who took medium doses of LSD or magic mushrooms.

This nanoparticle could be the key to a universal covid vaccine

Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

How do strong muscles keep your brain healthy?

There’s a robust molecular language being spoken between your muscles and your brain.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.