Skip to Content
Uncategorized

Carbon Jelly: C60’s Latest Trick

Carbon soccer balls can form into gels all by themselves, say chemists, overturning the long-held belief that gels must consist of at least two chemical components.

Gels are something of a puzzle for chemists. These jelly-like materials are not quite solid and yet not liquid either. Gels live in a kind of chemical twilight zone where they share many properties of both phases of matter.

So confusing is this, that chemists find it hard even to define what it is to be a gel, or what properties its components must have.

One thing they agree on however is that gels consist of at least two components: a liquid component and a solid component that forms into a loose network which binds the substance together. This is how the jelly-like properties arise.

Now even that piece of common-lore might have to change. Today, Patrick Royall at the University of Bristol in the UK and Stephen Williams at the Australian National University say that C60, the soccer ball form of carbon, can form into a gel all by itself.

So how come? For some time, chemists have known that C60 forms several different phases of matter. It can be a solid crystal, for example. But it is also known to form into clusters of a wide range of sizes. And it can form a liquid over a limited range of temperatures (although whether this liquid is stable or not, nobody is quite sure).

The question that interests chemists is whether a liquid-like state can exist at the same as the clusters, which could then bind together forming the characteristic network structure that would hold the jelly-like substance together.

Royall and Williams answer this question by creating a computer model of this substance and then seeing whether it is stable. And their conclusion is that it can. “We have presented numerical evidence that C60, under the right conditions can form a gel,” they say.

Such a substance would be a bizarre chemical curiosity. It means that in addition to forming diamond, graphite, graphene and an infinite number of carbon chickenwire structures such as tubes and footballs, carbon can also be a jelly.

But there’s more work ahead. Knowing that a substance can be stable is obviously useful but that doesn’t mean that it’s possible to make it.

Royall and Williams say it should exist over the time scales that they can simulate–up to 100 nanoseconds.

But these kinds of simulations are notoriously difficult to fine tune. It’s possible that C60 might prefer to crystallise.

Of course, there’s only one way to find out. And now there’s likely to be no shortage of volunteers willing to try.

Ref: arxiv.org/abs/1102.2959: C60: the first one-component gel?

Keep Reading

Most Popular

Russian servicemen take part in a military drills
Russian servicemen take part in a military drills

How a Russian cyberwar in Ukraine could ripple out globally

Soldiers and tanks may care about national borders. Cyber doesn't.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

ai learning to multitask concept
ai learning to multitask concept

Meta’s new learning algorithm can teach AI to multi-task

The single technique for teaching neural networks multiple skills is a step towards general-purpose AI.

mouse engineered to grow human hair
mouse engineered to grow human hair

Going bald? Lab-grown hair cells could be on the way

These biotech companies are reprogramming cells to treat baldness, but it’s still early days.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.