Skip to Content
Uncategorized

Galactic GPS Put Through Its Paces

For the first time, astronomers have reconstructed Earth’s trajectory through the cosmos using pulsar signals

Pulsars are rapidly rotating neutrons stars that emit a beam of radio waves. We seem them pulsing when the beam sweeps over us as they rotate. The rotation rate is amazingly regular, with some pulsars rivalling atomic clocks in their precison.

Soon after pulsars were discovered, astronomers and science fiction writers began to speculate about the possibility of using pulsars as celestial navigation beacons allowing interstellar travellers to find their way home, rather like the GPS system we have now.

That’s a simple idea but it belies some technical difficulty. At the speeds that most astronomical objects are travelling, relativity becomes important and that significantly increases the complexity of the calculations. But there’s no reason in principle why pulsars can’t be used in this way.

Today, Matteo Ruggiero and buddies at the Politecnico di Torino in Italy show us exactly how such a system would work by calculating the trajectory of a point on the Earth’s surface through spacetime relative to four pulsars. This movement is essentially the result of the Earth’s rotation and its orbit around the Sun.

The point they choose is the Parkes Observatory in Australia, a radio telescope whose roll in the Apollo landings was made famous by the movie The Dish.

In one sense, Parkes is good choice because it can easily observe the signals from pulsars. In another it is entirely arbitrary because Parkes can only observe one pulsar at a time and at least four are needed to tackle this problem .

Luckily, there is a simple way out of this limitation since there is a software package called TEMPO2 that simulates the signals that pulsars would produce anywhere on the Earth’s surface. Ruggiero and co use this to simulate the signals that the telescope at Parkes would receive over three days, were it able to monitor four pulsars simultaneously.

This situation is relatively straightforward mathematically since the pulsars can be thought of as stationary and their frequencies constant.

Ruggiero then compare the result to a different calculation of Earth’s movement made using ephemerides, the position of various astronomical objects in the sky.

Both trajectories are plotted in the figure above and, at this scale, show pretty good agreement. In fact, Ruggiero and co say that the limiting factor is the accuracy of the clock used to measure the pulsar signals. “These preliminary results show the feasibility of the use of pulsating sources for positioning purposes, in a fully relativistic framework,” they say.

That’s not to say we’ll be using celestial GPS any time soon. But it does show the potential of the technique for, say, interplanetary navigation, perhaps with the help of artificial ‘pulsars’ in the form of beacons on interplanetary spacecraft.

Ref: arxiv.org/abs/1011.0065 : Pulsars As Celestial Beacons To Detect The Motion Of The Earth

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.