Skip to Content

How Close Is a Workable Brain-Computer Interface?

Noninvasive communication between brains and computers just came a step closer.

The ultimate goal of brain-computer interfaces is something direct, noninvasive and relatively high bandwidth.

Not even science fiction authors believe that a non-invasive approach is ever going to happen. Think about all the times you’ve seen someone in movies like The Matrix “jack in” to a computer via a gnarly port in their skull.

In the real world, however, few people are ever fitted with direct neural interfaces to computers. The results have been impressive–macaques moving robot arms just by thinking about it, and patients with locked-in syndrome communicating for the first time in ages. But this hasn’t translated to a viable solution for most people who might need such an interface.

That’s why new research from Spain is so exciting. Scientists led by Eduardo Iáñez of Miguel Hernandez University have for the first time combined a number of desirable features into a single brain-computer interface that is noninvasive, spontaneous and asynchronous.

About that asynchronicity: it turns out that, because of the bandwidth limitations of recording brain activity through EEGs – external electrodes placed on the outside of the head – previous attempts at noninvasive brain computer interfaces required that users only direct the computer during certain time slots. Imagine a metronome ticking very slowly, say once a second, directing you to imagine the movement of your robotic arm starting… now. How tedious.

Iáñez and colleagues’ approach gets around this limitation by using four different models, each with assumptions that are sometimes the opposite others. This way, however a subject’s brain happens to be wired up, all the computer has to figure out is whether they mean “left” or “right” in order to direct a robot arm in two dimensions.

Here’s a video of the results. First, you’ll see the simulation, running in MatLab, and then the arm itself responding in near-real time to the user. (The computer has to sample brain activity in half-second intervals in order to gather enough data to detect what the user intends.)

Users drive the system simply by imagining what they want to happen – for example, they could visualize moving their hand in the direction they want the arm to move.

Here’s a slightly more impressive video, of an arm being activated in three dimensions, although the movements are clearly pre-programmed.

Future research goals include moving this interface out of two dimensions and into three. If they succeed, they’ll have at least matched in humans an experiment performed with Macaques in which an EEG-driven arm was used by the monkeys to feed themselves. That would be quite a feat for patients who are currently unable to engage in such activities, and the main barrier appears to be how clever computers can be about processing the signal. In other words, the sophistication of their algorithm.

Follow Mims on Twitter or contact him via email.

Keep Reading

Most Popular

still from Embodied Intelligence video
still from Embodied Intelligence video

These weird virtual creatures evolve their bodies to solve problems

They show how intelligence and body plans are closely linked—and could unlock AI for robots.

pig kidney transplant surgery
pig kidney transplant surgery

Surgeons have successfully tested a pig’s kidney in a human patient

The test, in a brain-dead patient, was very short but represents a milestone in the long quest to use animal organs in human transplants.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

We reviewed three at-home covid tests. The results were mixed.

Over-the-counter coronavirus tests are finally available in the US. Some are more accurate and easier to use than others.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.