Skip to Content
Uncategorized

Lost Rover Found on Moon With Retroreflector Still Intact

The Russian Lunokhod-1 rover, lost for over 30 years, is surprisingly well-preserved, say astronomers who have worked out its position to within a few centimetres

On 17 November 1970, the Soviet Union’s Luna 17 mission touched down on the surface of the Moon. The lander carried a huge rover the size of a small car, called Lunokhod-1, which trundled off into lunar landscape. Over the next year or so, Lunokhod-1 travelled some 10 km over the lunar surface, sending back tens of thousands of images and carrying out soil analyses at over 500 sites.

Even after it stopped working, Soviet and French scientists continued to bounce laser light off an array of French-built mirrors on the rover’s back. However, the last recorded glimpse of the rover was in May 1974 and the exact details of its position have since been lost.

That’s been a constant source of irritation for Tom Murphy at the University of California, San Diego, and pals who regularly bounce laser light off the other known reflectors on the lunar surface left by Apollos 11, 14 and 15 and Lunokhod-2.

More reflectors allow them to more accurately measure the position of the Moon. Getting the reflectors up there is not easy, so to have lost one is particularly galling.

The situation changed in March this year when a team analysing images from NASA’s Lunar Reconnaissance Orbiter spotted the Luna 17 landing site and the rover’s tracks. This pinpointed the rover’s position to within a few hundred meters.

On 22 April, Murphy and his crew fired their laser in that direction and immediately detected a return. Not only was Lunokhod-1’s retroreflector still working, but it turns out to be in significantly better condition that its sister craft’s. “The initial return was surprisingly bright, far surpassing the best-ever return signal from the twin reflector on Lunokhod 2,” say the team.

That’s good news. The rediscovery of the reflector could have an important impact in several areas of science that depend on accurately measuring the position and orbit of the Moon. Laser rangefinding currently provides the most precise tests of many aspects of gravity, including the strong equivalence principle, the constancy of Newton’s constant, geodetic precession, gravitomagnetism and the inverse square law.

“Ranging to this reflector will significantly advance the precision of Lunar laser rangefinding and the resulting gravitational and lunar science,” say Murphy and the team.

Nice to see a happy ending. Like being reunited with a long lost friend.

Ref: arxiv.org/abs/1009.5720: Laser Ranging to the Lost Lunokhod 1 Reflector

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.