Skip to Content
Uncategorized

The Hot New Thing in Biometric Security is… Ears

Ears don’t change shape, grow hair or wear disguises. They are the perfect means of identification.
September 28, 2010

The tubular crest that runs over the top of your ear is known as the helix. It’s quite distinctive, even if it doesn’t posses the pointy bit that proves you’re descended from a monkey. Best of all, it doesn’t change as you age, unlike the iris, which along with the face are the most popular means by which machines recognize humans.

The problem with using ears (or any other feature, such as your fingerprint or even the way that you walk) for biometric security, is that first a computer must find and isolate the feature to be identified.

That sounds like a simple problem only because humans do it so easily. Feature recognition is one of the biggest challenges of computer vision.

Fortunately, researchers in the School of Electronics and Computer Science of the University of Southampton have come up with a means for identifying ears with a success rate of 99.6% (pdf). That doesn’t mean it can identify who owns what ear at that rate, just that it can successfully complete the first step of any biometric identification exercise, known as enrollment. (Recognition is, of course, the second step.)

If you’re into algorithms, the way they got such consistent results is no less interesting than the potential applications of their work. (Think Minority Report, but instead of keeping around his old eyes, Tom Cruise has to cart around his old ears.)

The researchers followed a burgeoning trend in image analysis in which the algorithm used to highlight a feature is based on some actual physical process. A classic example of this is the use of an algorithm in which every pixel is assumed to act on every other pixel with a gravitational or magnetic pull proportional to its intensity. Add up all those forces, and you get a vector field that uniquely represents the image.

In this experiment, the researchers used the analogy of rays of light passing through the pixels to help them trace the helix of the ear. Depending on the intensity of the pixel, a hypothetical ray of light is either refracted by some angle or even reflected.

The advantage of using physical analogies to define vision algorithms is that they make intuitive sense and can be grasped by our puny human minds, allowing engineers to guess what the results of adjusting relevant parameters will be.

Follow Mims on Twitter or contact him via email.

Keep Reading

Most Popular

mouse engineered to grow human hair
mouse engineered to grow human hair

Going bald? Lab-grown hair cells could be on the way

These biotech companies are reprogramming cells to treat baldness, but it’s still early days.

Death and Jeff Bezos
Death and Jeff Bezos

Meet Altos Labs, Silicon Valley’s latest wild bet on living forever

Funders of a deep-pocketed new "rejuvenation" startup are said to include Jeff Bezos and Yuri Milner.

ai learning to multitask concept
ai learning to multitask concept

Meta’s new learning algorithm can teach AI to multi-task

The single technique for teaching neural networks multiple skills is a step towards general-purpose AI.

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.