Skip to Content

Remaking Life

Venter Institute researchers synthesize a genome.
This stack of containers stores fragments of synthesized DNA that, when joined together, will form the entire bacterial genome. Each container has multiple wells, each of which contains copies of one section of the genome.
Researcher Daniel Gibson combines a mixture of 10 consecutive DNA fragments with yeast cells that will stitch them together in the correct order, forming a circle of DNA. The stitching process is repeated until the yeast have assembled the complete genome.
Multiple yeast colonies bearing synthetic DNA are smeared on petri dishes that are numbered to identify which part of the synthetic genome they carry.
Multiple copies of the completed synthetic genome are encased in agarose gel inside this tube. The gel immobilizes and protects the fragile DNA loops.
Researcher Li Ma mixes bacterial cells with copies of the synthetic genome. This must be done gently to avoid breaking the DNA. The mixture sits in an incubator for three hours. The cells have been treated to encourage them to fuse together; as they do, some of them encapsulate a synthetic genome that had been floating in the surrounding solution.
A solution of cells, some of which contain the new genome, is mixed with a gel-based culture medium that contains an antibiotic. Then it’s poured into petri dishes and put into an incubator. Only cells containing the synthetic genome carry a gene that protects them from the anti­biotic. The blue spots are colonies of bacteria now controlled by the transplanted synthetic genome.

Keep Reading

Most Popular

Here’s how a Twitter engineer says it will break in the coming weeks

One insider says the company’s current staffing isn’t able to sustain the platform.

Technology that lets us “speak” to our dead relatives has arrived. Are we ready?

Digital clones of the people we love could forever change how we grieve.

How to befriend a crow

I watched a bunch of crows on TikTok and now I'm trying to connect with some local birds.

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

Elon said no thanks to using his mega-constellation for navigation. Researchers went ahead anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.