Skip to Content

Remaking Life

Venter Institute researchers synthesize a genome.
This stack of containers stores fragments of synthesized DNA that, when joined together, will form the entire bacterial genome. Each container has multiple wells, each of which contains copies of one section of the genome.
Researcher Daniel Gibson combines a mixture of 10 consecutive DNA fragments with yeast cells that will stitch them together in the correct order, forming a circle of DNA. The stitching process is repeated until the yeast have assembled the complete genome.
Multiple yeast colonies bearing synthetic DNA are smeared on petri dishes that are numbered to identify which part of the synthetic genome they carry.
Multiple copies of the completed synthetic genome are encased in agarose gel inside this tube. The gel immobilizes and protects the fragile DNA loops.
Researcher Li Ma mixes bacterial cells with copies of the synthetic genome. This must be done gently to avoid breaking the DNA. The mixture sits in an incubator for three hours. The cells have been treated to encourage them to fuse together; as they do, some of them encapsulate a synthetic genome that had been floating in the surrounding solution.
A solution of cells, some of which contain the new genome, is mixed with a gel-based culture medium that contains an antibiotic. Then it’s poured into petri dishes and put into an incubator. Only cells containing the synthetic genome carry a gene that protects them from the anti­biotic. The blue spots are colonies of bacteria now controlled by the transplanted synthetic genome.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.