Skip to Content

Building Super-Fast Electronics Components

Making graphene with clean edges will be key to using it for high-speed electronics.

For years, researchers have touted graphene as the magic material for the next generation of high-speed electronics, but so far it hasn’t proved practical. Now a new way of making nanoscale strips of carbon–the building block of graphene–could kick-start a shift toward superfast graphene components.

Graphene strips: The zigzag-shaped graphene nanoribbons in this image are a nanometer wide, 50 nanometers long.

The new method, which involves building from the molecular scale up, comes from researchers at the Max Planck Institute for Polymer Research in Germany and Empa in Switzerland. With atomic-level precision, the researchers made graphene nanoribbons about a nanometer wide.

The molecule-thick carbon material called graphene outperforms silicon, which is currently used in electronic components, in every way. It conducts electricity better than silicon, it bends more easily, and it’s thinner. Using graphene instead of silicon could lead to faster, thinner, more powerful electronic devices. However, unless graphene sheets are less than 10 nanometers wide and have clean edges, they lack the electronic properties needed before manufacturers can use them for devices like transistors, switches, and diodes–key components in circuitry.

The Swiss team fabricated these skinny graphene strips by triggering molecular-scale chemical reactions on sheets of heated gold. This let the team precisely control the width of the nanoribbons and the shape of their edge. Molecules were arranged into long fibers on the gold surface. When that surface was heated, adjacent strings linked and fused to form ribbon structures about one nanometer across, with a uniform zigzag edge.

“The beauty of that is that it can be done with atomic precision,” says Roman Fasel, the corresponding author on the study. “It’s not cutting, it’s assembling.”

Other ways of making nanoribbons involve peeling strips of graphene from a larger sheet, etching them with lithography, or unzipping cylinder-shaped carbon nanotubes. But such nanoribbons are thicker and have random edges.

“In nanoribbons, he who controls the edges wins,” says James Tour, a graphene expert at Rice University, who was not involved with the work. “There is no way yet to take a big sheet of graphene and chop it up with this level of control.”

“This type of nanoribbon would enrich and open up new possibilities for graphene electronics,” says Yu-Ming Lin, a researcher working on graphene-based transistors at the IBM T. J. Watson Research Center in New York.

Graphene nanoribbons are still a long way from practical application, says Tour. “The next step is to make a handful of devices. That’s not hard to do the big step is to orient it en masse.”

But the success of Fasel and his team’s chemical method, Tour says, will encourage more research into fine-tuning the steps so that nanoribbons of this quality can be produced on a large scale. For instance, researchers can now experiment with the finer edge structure and electronic effects of the new nanoribbons, testing theories that, to date, they could only simulate on computers.

“It points the direction rather than being a final result,” says Walter de Heer, a researcher at the Georgia Institute of Technology who has developed a way to grow graphene on silicon chips. “It’s a first step in a long chain of steps that will lead to graphene electronics.”

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.