Skip to Content

A Chemical to Grow Brain Cells

The compound boosts memory in elderly rats.

Since the discovery that the adult brain can birth new neurons, researchers have been avidly searching for chemicals or other treatments that can enhance the process and hopefully boost brain power. Exercise appears to have potent stimulating effects on the growth of new neurons, as does social interaction and some drugs, such as the antidepressant Prozac. Scientists ultimately hope that drugs developed to generate and protect new neurons will also protect against the cognitive deficits of dementia and other neurological diseases of aging.

In a new study published today in the journal Cell, researchers screened 1000 molecules in mice to see which ones enhanced production of new neurons in a brain area involved in learning and memory. This region, known as the hippocampus, is one of two spots known to birth new neurons in the adult mammalian brain. It takes 2 to 4 weeks for the cells to migrate to the appropriate location and integrate into the existing neural circuitry, and many of them die along the way.

The researchers found that one compound, dubbed P7C3, protected these newborn neurons from dying. When given to mice genetically engineered to have very little new nerve cell growth, the compound seemed to repair the abnormal hippocampus. It could also increase birth and survival of new neurons in older rats, according to a press release from UT Southwestern Medical Center. The animals also had improved memory: they could better remember the location of a platform submerged in water, a standard test of learning and memory in rodents.

Newborn neurons: Aged rats treated with P7C3 performed significantly better on a memory test than control rats treated with an inactive substance (veh). This was traced to a three-fold higher number of new neurons (black circles) part of the hippocampus, a brain area involved in learning and memory. Credit: Andrew Pieper, UT Southwestern Medical Center

Scientists are now trying to figure out how the chemical protects newly born cells. “We don’t know yet whether P7C3 can block the death of mature nerve cells, which is what occurs in humans with these conditions,” said Steven McKnight, chairman of biochemistry at UT Southwestern and senior author of the study, in the release.

According to a release from the journal Cell, where the paper was published;

Two other drugs (Dimebon and Serono compounds) - both of which bear structural similarities to P7C3 -also encourage the growth of new neurons. It’s tempting to think that all three compounds work in the same way.

In fact, Dimebon first came to the attention of researchers based on anecdotal reports by Russian physicians that the drug may ameliorate the symptoms of age-related cognitive decline. Unfortunately, unpublished reports from a phase 3 clinical trial have since failed to provide evidence that the drug could stave off the memory loss that comes with Alzheimer’s disease.

In light of the new findings, it may be worth another look. “The speculative idea that these chemicals share a common mode of action will only be rigorously tested upon identification of their molecular target(s).”

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.