Skip to Content
Uncategorized

How to Entangle Humans (contd)

An experiment in which humans will ‘see’ entanglement is pressing ahead.

We’ve looked before at the extraordinary effort to entangle humans going on at the University of Geneva in Switzerland. Today we get a little more insight into the challenges this team faces in achieving their task.

In essence, entanglement is measured by creating two entangled photons, sending them to widely separated detectors and determining how quickly a measurement on one influences the other. If this influence is superluminal, then you’ve got entanglement on your hands.

The experiment underway by Pavel Sekatski and pals at the University of Geneva is simply to replace the photon detectors in this set up with human eyes.

That’s not quite as ridiculous as it sounds. Human eyes are remarkably sensitive: they can be triggered by the presence of only a handful of photons. They have an efficiency of about 7 per cent, meaning that more than 90 per cent of the photons are lost as they travel between the pupil and the retina. They also have a dark count close to zero meaning that they generate few if any false positives.

That’s not bad. In principle, human eyes ought to function quite well as detectors in these kinds of entanglement experiments.

But there’s a problem: the number of photons needed to trigger detection, which is about 7 in humans. How do you reliably entangle at least this number of photons and still carry out the necessary tests?

Today, Sekasti and co lay out the various methods for transferring or cloning the entanglement from one of a pair of entangled photons to an ensemble of at least 7 photons, which would be large enough for a human to see. In such an experiment, a human eye would detect this handful of photons while a conventional single photon detector spots the other photon.

The question is whether the entanglement between the original pair of photons is preserved in this new ensemble in a way that allows a measurement that can only be explained in terms of a superluminal influence.

Their conclusion is that such a measurement is still possible but within certain limits. Sekatski and co say that the data only allows conclusions to be drawn about the initial 2-photon pair. But the bottom line is that it is definitely possible for a real person to see quantum correlations with the naked eye.

Of course, there are other ways to generate entangled ensembles which would give a different, perhaps better result and no doubt Sekatski and co will look at those in due course.

In the meantime they are pressing ahead with the experiments described here. “The experimental realizations of the analyzed situations, using the various cloners, are underway and will be discussed in future works,” they say.

This falls short of actually entangling two humans but instead entangles a human and a photon detector.

Entangling a human with a lump of silicon and a few wires may not be as romantic as connecting with another soul but it will be remarkable to see it done at all.

Expect a successful result to generate a blaze of publicity.

Ref: arxiv.org/abs/1005.5083: Cloning Entangled Qubits to Scales One Can See

Deep Dive

Uncategorized

Five poems about the mind

DREAM VENDING MACHINE I feed it coins and watch the spring coil back,the clunk of a vacuum-packed, foil-wrappeddream dropping into the tray. It dispenses all kinds of dreams—bad dreams, good dreams,short nightmares to stave off worse ones, recurring dreams with a teacake marshmallow center.Hardboiled caramel dreams to tuck in your cheek,a bag of orange dreams…

Work reinvented: Tech will drive the office evolution

As organizations navigate a new world of hybrid work, tech innovation will be crucial for employee connection and collaboration.

lucid dreaming concept
lucid dreaming concept

I taught myself to lucid dream. You can too.

We still don’t know much about the experience of being aware that you’re dreaming—but a few researchers think it could help us find out more about how the brain works.

panpsychism concept
panpsychism concept

Is everything in the world a little bit conscious?

The idea that consciousness is widespread is attractive to many for intellectual and, perhaps, also emotional
reasons. But can it be tested? Surprisingly, perhaps it can.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.